Home
Class 12
MATHS
If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then ...

If `|x^2-2x+2|-|2x^2-5x+2|=|x^2-3x|` then the set of values of x is

A

`(-oo , 0] cup [ 3,00)`

B

`[0,1/2] cup [2,3]`

C

`(-oo,0]cup [1/2,2] cup [3,oo)`

D

`[0,2] cup [3,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( |x^2 - 2x + 2| - |2x^2 - 5x + 2| = |x^2 - 3x| \), we will follow these steps: ### Step 1: Rewrite the equation We start by rewriting the equation: \[ |x^2 - 2x + 2| = |2x^2 - 5x + 2| + |x^2 - 3x| \] ### Step 2: Analyze the expressions inside the absolute values Next, we need to analyze the expressions inside the absolute values. We will find the roots of each quadratic expression to determine the intervals where they change sign. 1. **For \(x^2 - 2x + 2\)**: - The discriminant \(D = (-2)^2 - 4 \cdot 1 \cdot 2 = 4 - 8 = -4\) (no real roots). - This expression is always positive since it opens upwards. 2. **For \(2x^2 - 5x + 2\)**: - The discriminant \(D = (-5)^2 - 4 \cdot 2 \cdot 2 = 25 - 16 = 9\). - Roots: \(x = \frac{5 \pm 3}{4} \Rightarrow x = 2 \text{ and } x = \frac{1}{2}\). 3. **For \(x^2 - 3x\)**: - The roots are \(x(x - 3) = 0\) giving \(x = 0 \text{ and } x = 3\). ### Step 3: Determine intervals The critical points are \(0, \frac{1}{2}, 2, 3\). We will analyze the sign of the expressions in the intervals: - \( (-\infty, 0) \) - \( (0, \frac{1}{2}) \) - \( (\frac{1}{2}, 2) \) - \( (2, 3) \) - \( (3, \infty) \) ### Step 4: Test each interval 1. **Interval \( (-\infty, 0) \)**: - \( |x^2 - 2x + 2| = x^2 - 2x + 2 \) - \( |2x^2 - 5x + 2| = -(2x^2 - 5x + 2) \) - \( |x^2 - 3x| = -(x^2 - 3x) \) 2. **Interval \( (0, \frac{1}{2}) \)**: - \( |x^2 - 2x + 2| = x^2 - 2x + 2 \) - \( |2x^2 - 5x + 2| = -(2x^2 - 5x + 2) \) - \( |x^2 - 3x| = -(x^2 - 3x) \) 3. **Interval \( (\frac{1}{2}, 2) \)**: - \( |x^2 - 2x + 2| = x^2 - 2x + 2 \) - \( |2x^2 - 5x + 2| = 2x^2 - 5x + 2 \) - \( |x^2 - 3x| = -(x^2 - 3x) \) 4. **Interval \( (2, 3) \)**: - \( |x^2 - 2x + 2| = x^2 - 2x + 2 \) - \( |2x^2 - 5x + 2| = 2x^2 - 5x + 2 \) - \( |x^2 - 3x| = x^2 - 3x \) 5. **Interval \( (3, \infty) \)**: - \( |x^2 - 2x + 2| = x^2 - 2x + 2 \) - \( |2x^2 - 5x + 2| = 2x^2 - 5x + 2 \) - \( |x^2 - 3x| = x^2 - 3x \) ### Step 5: Solve inequalities For each interval, we will set up inequalities based on the signs of the expressions and solve them. ### Step 6: Combine solutions After solving all the inequalities, we will combine the solutions to find the set of values of \(x\). ### Final Result The solution set is: \[ x \in [0, \frac{1}{2}] \cup [2, 3] \]

To solve the equation \( |x^2 - 2x + 2| - |2x^2 - 5x + 2| = |x^2 - 3x| \), we will follow these steps: ### Step 1: Rewrite the equation We start by rewriting the equation: \[ |x^2 - 2x + 2| = |2x^2 - 5x + 2| + |x^2 - 3x| \] ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If |x^2- 2x- 8| + |x^2+ x -2|= 3|x +2| , then the set of all real values of x is

Find the greatest value of 3+5x-2x^(2) .

If (0.2)^((2x-3)/(x-2))gt 5 then complete solution set of values of x is

Let f(x)={{:(3x^2-2x+10, x lt 1),(-2,x gt 1):} The set of values of b for which f(x) has greatest value at x=1 is

"Let "f(x) ={underset(-2x + log_(2) (b^(2)-2), x gt1)(x^(3) -x^(2) +10 x-5 , x le 1). The set of values of b for which f(x) has greatest value at x= 1 is given by .

If |A| = 2 and A = | (2x, 6) , (5x, 1)| then find the value of x

If 3^(x)+2^(2x) ge 5^(x) , then the solution set for x, is

Let f (x) = {{:(2-|x ^(2) +5x +6|, x ne -2),( b ^(2)+1, x =-2):} Has relative maximum at x =-2, then complete set of values b can take is:

CENGAGE ENGLISH-SET THEORY AND REAL NUMBER SYSTEM -EXERCISES
  1. Which is the simplified representation of (A' cap B' cap C) cup (B cap...

    Text Solution

    |

  2. In a statistical investigation of 1,003 families of Calcutta, it was f...

    Text Solution

    |

  3. A survey shows that 63 % of the pepole watch a news channel whereas , ...

    Text Solution

    |

  4. In a town of 10000 families, it was found that 40% families buy ne...

    Text Solution

    |

  5. Complete solution set of inequlaity ((x+2)(x+3))/((x-2)(x-3))le1

    Text Solution

    |

  6. The number of intergal values of x if 5x -1 lt (x+1)^2 lt 7 x-3 is

    Text Solution

    |

  7. If set A ={x|(x^2(x-5)(2x-1))/((5x+1)(x+2)) lt 0 } and Set B={x|(3x...

    Text Solution

    |

  8. Number of intergers satisfying the inequality x^4- 29x^2+100 le 0 i...

    Text Solution

    |

  9. If n gt 0 and exactly 15 integers satisfying (x+6)(x-4 ) (x-5) (2x-...

    Text Solution

    |

  10. The solution of the inequality ((x+7)/(x-5)+(3x+1)/(2) ge 0 is

    Text Solution

    |

  11. The complete solution set of inequality ((x-5)^(1005)(x+8)^(1008)(x-1)...

    Text Solution

    |

  12. Sum of solution of the equation |x|^3-4|x|^2+3|x|=0 is

    Text Solution

    |

  13. Number of intergral roots of |x-1||x^2-2|=2 is

    Text Solution

    |

  14. The solution set of the inequlity (|x-2|-x)/(x)lt2 is

    Text Solution

    |

  15. Number of solutions of the equation |2-|x||=x +4 is a.0 b.1 c.2 d.Inf...

    Text Solution

    |

  16. Number of intergal values of x satisfying the inequality (x^2+6x-7)/(|...

    Text Solution

    |

  17. If -4lex lt 2 then ||x+2|-3 lies in the inerval

    Text Solution

    |

  18. Complete set of values of x satisfying inequality ||x-1|-5| lt 2x -5 ...

    Text Solution

    |

  19. If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

    Text Solution

    |

  20. The complete solution set of the equation |x^2-5x+6|+|x^2+12x+27|=|17x...

    Text Solution

    |