Home
Class 12
MATHS
Let alpha and beta be two roots of the e...

Let `alpha` and `beta` be two roots of the equation `x^(2) + 2x + 2 = 0`. Then `alpha^(15) + beta^(15)` is equal to

A

512

B

-512

C

-256

D

256

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding \( \alpha^{15} + \beta^{15} \) where \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 + 2x + 2 = 0 \), we will follow these steps: ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation \( ax^2 + bx + c = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( x^2 + 2x + 2 = 0 \), we have \( a = 1, b = 2, c = 2 \). Substituting these values into the formula: \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot 2}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 - 8}}{2} = \frac{-2 \pm \sqrt{-4}}{2} \] This simplifies to: \[ x = \frac{-2 \pm 2i}{2} = -1 \pm i \] Thus, the roots are: \[ \alpha = -1 + i \quad \text{and} \quad \beta = -1 - i \] ### Step 2: Calculate \( \alpha^2 \) and \( \beta^2 \) Now we will compute \( \alpha^2 \) and \( \beta^2 \): \[ \alpha^2 = (-1 + i)^2 = 1 - 2i + i^2 = 1 - 2i - 1 = -2i \] \[ \beta^2 = (-1 - i)^2 = 1 + 2i + i^2 = 1 + 2i - 1 = 2i \] ### Step 3: Use the recurrence relation We can use the relation \( \alpha^n + \beta^n = -2(\alpha^{n-1} + \beta^{n-1}) - (\alpha^{n-2} + \beta^{n-2}) \). Let \( S_n = \alpha^n + \beta^n \). We have: - \( S_0 = 2 \) (since \( \alpha^0 + \beta^0 = 1 + 1 \)) - \( S_1 = -2 \) (since \( \alpha + \beta = -2 \)) Now, using the recurrence relation: \[ S_2 = \alpha^2 + \beta^2 = -2 \] \[ S_3 = -2S_2 - S_1 = -2(-2) - (-2) = 4 + 2 = 6 \] \[ S_4 = -2S_3 - S_2 = -2(6) - (-2) = -12 + 2 = -10 \] \[ S_5 = -2S_4 - S_3 = -2(-10) - 6 = 20 - 6 = 14 \] \[ S_6 = -2S_5 - S_4 = -2(14) - (-10) = -28 + 10 = -18 \] \[ S_7 = -2S_6 - S_5 = -2(-18) - 14 = 36 - 14 = 22 \] \[ S_8 = -2S_7 - S_6 = -2(22) - (-18) = -44 + 18 = -26 \] \[ S_9 = -2S_8 - S_7 = -2(-26) - 22 = 52 - 22 = 30 \] \[ S_{10} = -2S_9 - S_8 = -2(30) - (-26) = -60 + 26 = -34 \] \[ S_{11} = -2S_{10} - S_9 = -2(-34) - 30 = 68 - 30 = 38 \] \[ S_{12} = -2S_{11} - S_{10} = -2(38) - (-34) = -76 + 34 = -42 \] \[ S_{13} = -2S_{12} - S_{11} = -2(-42) - 38 = 84 - 38 = 46 \] \[ S_{14} = -2S_{13} - S_{12} = -2(46) - (-42) = -92 + 42 = -50 \] \[ S_{15} = -2S_{14} - S_{13} = -2(-50) - 46 = 100 - 46 = 54 \] ### Final Result Thus, \( \alpha^{15} + \beta^{15} = S_{15} = 54 \).
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let alpha, and beta are the roots of the equation x^(2)+x +1 =0 then

If alpha and beta are the roots of the equation 2x^(2) - 3x + 4 = 0 , then alpha^(2) + beta^(2) = ____

If alpha and beta are the root of the equation x^(2) - 4x + 5 = 0 , then alpha^(2) + beta^(2) = ________

If alpha and beta are roots of the equation x^(2)+x+1=0 , then alpha^(2)+beta^(2) is equal to

If alpha, beta in C are distinct roots of the equation x^2+1=0 then alpha^(101)+beta^(107) is equal to

Let alpha and beta be the roots of the equation x^(2) + x + 1 = 0 . Then, for y ne 0 in R. [{:(y+1, alpha,beta), (alpha, y+beta, 1),(beta, 1, y+alpha):}] is

If alpha and beta be the roots of equation x^(2) + 3x + 1 = 0 then the value of ((alpha)/(1 + beta))^(2) + ((beta)/(1 + alpha))^(2) is equal to

Let alpha, beta are the roots of the equation x^(2)+x+1=0 , then alpha^3-beta^3

Let alpha and beta be two real roots of the equation 5cot^2x-3cotx-1=0 , then cot^2 (alpha+beta) =

If alpha and beta are roots of the equation 2x^(2)-3x-5=0 , then the value of (1)/(alpha)+(1)/(beta) is

CENGAGE ENGLISH-JEE 2019-MCQ
  1. In a class 140 students numbered 1 to 140, all even numbered students ...

    Text Solution

    |

  2. Let alpha and beta be two roots of the equation x^(2) + 2x + 2 = 0. Th...

    Text Solution

    |

  3. If both the roots of the quadratic equation x^(2) - mx + 4 = 0 are rea...

    Text Solution

    |

  4. The number of all possible positive integral values of alpha for whic...

    Text Solution

    |

  5. Consider the quadratic equation (c - 5)x^(2) - 2cx + (c - 4) = 0, c ne...

    Text Solution

    |

  6. The values of lambda such that sum of the squares of the roots of the ...

    Text Solution

    |

  7. If one root is cube of the other of equation 81x^2 +kx+256=0 then valu...

    Text Solution

    |

  8. Let alpha and beta be the roots of the quadratic equation x^(2) sin th...

    Text Solution

    |

  9. If ratio of the roots of the quadratic equation 3m^2x^2+m(m-4)x+2=0 is...

    Text Solution

    |

  10. The number of integral values of m for which the quadratic expression ...

    Text Solution

    |

  11. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  12. Let Z0 is the root of equation x^2+x+1=0 and Z=3+6i(Z0)^(81)-3i(Z0)^(9...

    Text Solution

    |

  13. Let z(1) and z(2) be any two non-zero complex numbers such that 3|z(1)...

    Text Solution

    |

  14. If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

    Text Solution

    |

  15. Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbe...

    Text Solution

    |

  16. Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR t...

    Text Solution

    |

  17. Let Z(1) and Z(2) be two complex numbers satisfying |Z(1)|=9 and |Z(2)...

    Text Solution

    |

  18. Consider the statement : " P(n) : n^(2)-n+41 is prime." Then, which on...

    Text Solution

    |

  19. If a ,b ,c are three distinct real numbers in G.P. and a+b+c=x b , the...

    Text Solution

    |

  20. Let a1, a2,...,a30 be an AP, S=sum(i=1)^(30)ai and T=sum(i=1)^(15)a(2i...

    Text Solution

    |