Home
Class 12
MATHS
Let alpha and beta be the roots of the q...

Let `alpha` and `beta` be the roots of the quadratic equation `x^(2)` sin `theta - x (sin theta cos theta + 1) + cos theta = 0 (0 lt theta lt 45^(@))`, and `alpha lt beta`.
Then `Sigma_(n=0)^(oo) (alpha^(n) + ((-1)^(n))/(beta^(n)))` is equal to

A

`(1)/(1 - cos theta) + (1)/(1 + sin theta)`

B

`(1)/(1 + cos theta) + (1)/(1 - sin theta)`

C

`(1)/(1 - cos theta) - (1)/(1 + sin theta)`

D

`(1)/(1 + cos theta) - (1)/(1 - sin theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we start with the quadratic equation: \[ x^2 \sin \theta - x (\sin \theta \cos \theta + 1) + \cos \theta = 0 \] ### Step 1: Identify the roots of the quadratic equation Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), we identify \( a = \sin \theta \), \( b = -(\sin \theta \cos \theta + 1) \), and \( c = \cos \theta \). Calculating the discriminant: \[ D = b^2 - 4ac = [-(\sin \theta \cos \theta + 1)]^2 - 4(\sin \theta)(\cos \theta) \] Calculating \( b^2 \): \[ b^2 = (\sin \theta \cos \theta + 1)^2 = \sin^2 \theta \cos^2 \theta + 2\sin \theta \cos \theta + 1 \] Calculating \( 4ac \): \[ 4ac = 4\sin \theta \cos \theta \] Thus, the discriminant becomes: \[ D = \sin^2 \theta \cos^2 \theta + 2\sin \theta \cos \theta + 1 - 4\sin \theta \cos \theta \] \[ D = \sin^2 \theta \cos^2 \theta - 2\sin \theta \cos \theta + 1 \] \[ D = (\sin \theta \cos \theta - 1)^2 \] ### Step 2: Calculate the roots Now, substituting back into the quadratic formula: \[ x = \frac{(\sin \theta \cos \theta + 1) \pm (\sin \theta \cos \theta - 1)}{2\sin \theta} \] Calculating the two roots: 1. For the positive root: \[ x_1 = \frac{2\sin \theta \cos \theta}{2\sin \theta} = \cos \theta \] 2. For the negative root: \[ x_2 = \frac{2}{2\sin \theta} = \frac{1}{\sin \theta} = \csc \theta \] Thus, we have: \[ \alpha = \cos \theta, \quad \beta = \csc \theta \] ### Step 3: Find the summation We need to evaluate the series: \[ \sum_{n=0}^{\infty} \left( \alpha^n + \frac{(-1)^n}{\beta^n} \right) \] This can be separated into two series: 1. The first series: \[ \sum_{n=0}^{\infty} \alpha^n = \frac{1}{1 - \alpha} = \frac{1}{1 - \cos \theta} \] 2. The second series: \[ \sum_{n=0}^{\infty} \frac{(-1)^n}{\beta^n} = \frac{1}{1 + \frac{1}{\beta}} = \frac{\beta}{\beta + 1} = \frac{\csc \theta}{\csc \theta + 1} \] ### Step 4: Combine the results Combining both series gives: \[ \sum_{n=0}^{\infty} \left( \alpha^n + \frac{(-1)^n}{\beta^n} \right) = \frac{1}{1 - \cos \theta} + \frac{\csc \theta}{\csc \theta + 1} \] ### Step 5: Simplify the expression Using \( \csc \theta = \frac{1}{\sin \theta} \): \[ \frac{\csc \theta}{\csc \theta + 1} = \frac{\frac{1}{\sin \theta}}{\frac{1}{\sin \theta} + 1} = \frac{1}{1 + \sin \theta} \] Thus, the final result is: \[ \sum_{n=0}^{\infty} \left( \alpha^n + \frac{(-1)^n}{\beta^n} \right) = \frac{1}{1 - \cos \theta} + \frac{1}{1 + \sin \theta} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

sin 5 theta = cos 2 theta , 0^(@) lt theta lt 180^(@). Find value of theta

Solve: sin 7 theta + sin 4 theta + sin theta = 0, 0 lt theta lt ( pi)/(2)

If 0 lt alpha lt beta then lim_(n to oo) (beta^(n) + alpha^(n))^((1)/(n)) is equal to

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

If alpha,beta are the roots of the quadratic equation x^2-2(1-sin2theta)x-2 cos^2(2theta) = 0 , then the minimum value of (alpha^2+beta^2) is equal to

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If cos theta - sin theta = (1)/(5) , where 0 lt theta lt (pi)/(4) , then

CENGAGE ENGLISH-JEE 2019-MCQ
  1. The values of lambda such that sum of the squares of the roots of the ...

    Text Solution

    |

  2. If one root is cube of the other of equation 81x^2 +kx+256=0 then valu...

    Text Solution

    |

  3. Let alpha and beta be the roots of the quadratic equation x^(2) sin th...

    Text Solution

    |

  4. If ratio of the roots of the quadratic equation 3m^2x^2+m(m-4)x+2=0 is...

    Text Solution

    |

  5. The number of integral values of m for which the quadratic expression ...

    Text Solution

    |

  6. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  7. Let Z0 is the root of equation x^2+x+1=0 and Z=3+6i(Z0)^(81)-3i(Z0)^(9...

    Text Solution

    |

  8. Let z(1) and z(2) be any two non-zero complex numbers such that 3|z(1)...

    Text Solution

    |

  9. If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

    Text Solution

    |

  10. Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbe...

    Text Solution

    |

  11. Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR t...

    Text Solution

    |

  12. Let Z(1) and Z(2) be two complex numbers satisfying |Z(1)|=9 and |Z(2)...

    Text Solution

    |

  13. Consider the statement : " P(n) : n^(2)-n+41 is prime." Then, which on...

    Text Solution

    |

  14. If a ,b ,c are three distinct real numbers in G.P. and a+b+c=x b , the...

    Text Solution

    |

  15. Let a1, a2,...,a30 be an AP, S=sum(i=1)^(30)ai and T=sum(i=1)^(15)a(2i...

    Text Solution

    |

  16. The sum of series 1+6+(9(1^(2)+2^(2)+3^(2)))/(7) + (12(1^(2)+2^(2)+...

    Text Solution

    |

  17. Let a, b and c be the 7th, 11th and 13th terms, respectively, of a non...

    Text Solution

    |

  18. The sum of all two digit positive numbers which when divided by 7 yiel...

    Text Solution

    |

  19. If 5, 5r and 5r^(2) are the lengths of the sides of a triangle, then r...

    Text Solution

    |

  20. The sum of an infinite geometric series with positive terms is 3 and t...

    Text Solution

    |