Home
Class 12
MATHS
Let A={theta in (-pi /2,pi):(3+2i sin th...

Let `A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta )` is purely imaginary }
Then the sum of the elements in A is

A

`(5pi)/(6)`

B

`(2pi)/(3)`

C

`(3pi)/(4)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(\theta\) for which the expression \(\frac{3 + 2i \sin \theta}{1 - 2i \sin \theta}\) is purely imaginary. ### Step-by-Step Solution: 1. **Set up the expression**: We start with the expression: \[ z = \frac{3 + 2i \sin \theta}{1 - 2i \sin \theta} \] We want to find when this expression is purely imaginary. 2. **Multiply numerator and denominator by the conjugate of the denominator**: To simplify, we multiply the numerator and denominator by the conjugate of the denominator: \[ z = \frac{(3 + 2i \sin \theta)(1 + 2i \sin \theta)}{(1 - 2i \sin \theta)(1 + 2i \sin \theta)} \] 3. **Calculate the denominator**: The denominator simplifies as follows: \[ (1 - 2i \sin \theta)(1 + 2i \sin \theta) = 1^2 - (2i \sin \theta)^2 = 1 + 4 \sin^2 \theta \] 4. **Calculate the numerator**: Now, we simplify the numerator: \[ (3 + 2i \sin \theta)(1 + 2i \sin \theta) = 3 + 6i \sin \theta + 2i \sin \theta - 4 \sin^2 \theta = 3 - 4 \sin^2 \theta + (6i \sin \theta + 2i \sin \theta) \] This gives: \[ = 3 - 4 \sin^2 \theta + 8i \sin \theta \] 5. **Combine the results**: Thus, we have: \[ z = \frac{3 - 4 \sin^2 \theta + 8i \sin \theta}{1 + 4 \sin^2 \theta} \] 6. **Separate real and imaginary parts**: The real part \(x\) and imaginary part \(y\) of \(z\) can be expressed as: \[ x = \frac{3 - 4 \sin^2 \theta}{1 + 4 \sin^2 \theta}, \quad y = \frac{8 \sin \theta}{1 + 4 \sin^2 \theta} \] 7. **Condition for purely imaginary**: For \(z\) to be purely imaginary, the real part must be zero: \[ 3 - 4 \sin^2 \theta = 0 \] 8. **Solve for \(\sin^2 \theta\)**: Rearranging gives: \[ 4 \sin^2 \theta = 3 \implies \sin^2 \theta = \frac{3}{4} \implies \sin \theta = \pm \frac{\sqrt{3}}{2} \] 9. **Find the angles**: The solutions for \(\sin \theta = \frac{\sqrt{3}}{2}\) are: \[ \theta = \frac{\pi}{3} \quad \text{and} \quad \theta = \frac{2\pi}{3} \] The solution for \(\sin \theta = -\frac{\sqrt{3}}{2}\) is: \[ \theta = -\frac{\pi}{3} \] 10. **Check the range**: The values \(\frac{\pi}{3}\), \(\frac{2\pi}{3}\), and \(-\frac{\pi}{3}\) all lie within the interval \((- \frac{\pi}{2}, \pi)\). 11. **Sum the angles**: Now, we sum the elements: \[ \frac{\pi}{3} + \frac{2\pi}{3} - \frac{\pi}{3} = \frac{2\pi}{3} \] ### Final Answer: The sum of the elements in \(A\) is \(\frac{2\pi}{3}\).
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Find real value of theta for which (3+2i sin theta)/(1-2i sin theta) is purely real.

Let S = { theta in [-2pi,2pi]:2 cos^(2) theta + 3 sin theta = 0} , then the sum of the elements of S is .

If theta in [(pi)/(2),3(pi)/(2)] then sin^(-1)(sin theta) equals

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

If sin(pi cos theta)=cos(pi sin theta) , then sin 2theta=

If tan((pi)/(2) sin theta )= cot((pi)/(2) cos theta ) , then sin theta + cos theta is equal to

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

Solve: sin2theta=sin((2pi)/(3)-theta)

cos theta + sin theta - sin 2 theta = (1)/(2), 0 lt theta lt (pi)/(2)

Let theta in (pi//4,pi//2), then Statement I (cos theta)^(sin theta ) lt ( cos theta )^(cos theta ) lt ( sin theta )^(cos theta ) Statement II The equation e^(sin theta )-e^(-sin theta )=4 ha a unique solution.

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If ratio of the roots of the quadratic equation 3m^2x^2+m(m-4)x+2=0 is...

    Text Solution

    |

  2. The number of integral values of m for which the quadratic expression ...

    Text Solution

    |

  3. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  4. Let Z0 is the root of equation x^2+x+1=0 and Z=3+6i(Z0)^(81)-3i(Z0)^(9...

    Text Solution

    |

  5. Let z(1) and z(2) be any two non-zero complex numbers such that 3|z(1)...

    Text Solution

    |

  6. If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

    Text Solution

    |

  7. Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbe...

    Text Solution

    |

  8. Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR t...

    Text Solution

    |

  9. Let Z(1) and Z(2) be two complex numbers satisfying |Z(1)|=9 and |Z(2)...

    Text Solution

    |

  10. Consider the statement : " P(n) : n^(2)-n+41 is prime." Then, which on...

    Text Solution

    |

  11. If a ,b ,c are three distinct real numbers in G.P. and a+b+c=x b , the...

    Text Solution

    |

  12. Let a1, a2,...,a30 be an AP, S=sum(i=1)^(30)ai and T=sum(i=1)^(15)a(2i...

    Text Solution

    |

  13. The sum of series 1+6+(9(1^(2)+2^(2)+3^(2)))/(7) + (12(1^(2)+2^(2)+...

    Text Solution

    |

  14. Let a, b and c be the 7th, 11th and 13th terms, respectively, of a non...

    Text Solution

    |

  15. The sum of all two digit positive numbers which when divided by 7 yiel...

    Text Solution

    |

  16. If 5, 5r and 5r^(2) are the lengths of the sides of a triangle, then r...

    Text Solution

    |

  17. The sum of an infinite geometric series with positive terms is 3 and t...

    Text Solution

    |

  18. Let a1, a2, a3, ?a10 are in G.P. if a3/a1 =25 then a9/a5 is equal to ...

    Text Solution

    |

  19. If 19^(th) term of a non-zero A.P. is zero, then (49^(th) term) : (29^...

    Text Solution

    |

  20. The product of three consecutive terms of a GP is 512. If 4 is added t...

    Text Solution

    |