Home
Class 12
MATHS
Let Z0 is the root of equation x^2+x+1=0...

Let `Z_0` is the root of equation `x^2+x+1=0` and `Z=3+6i(Z_0)^(81)-3i(Z_0)^(93)` Then arg `(Z)` is equal to (a) `(pi)/(4)` (b) `(pi)/(3)` (c) `pi` (d) `(pi)/(6)`

A

`(pi)/(4)`

B

`(pi)/(3)`

C

0

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the complex number \( Z \) defined as: \[ Z = 3 + 6i Z_0^{81} - 3i Z_0^{93} \] where \( Z_0 \) is a root of the equation \( x^2 + x + 1 = 0 \). ### Step 1: Find the roots of the equation \( x^2 + x + 1 = 0 \) To find the roots, we can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here, \( a = 1 \), \( b = 1 \), and \( c = 1 \): \[ x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] Thus, the roots are: \[ Z_0 = \frac{-1 + i\sqrt{3}}{2} \quad \text{and} \quad Z_0^2 = \frac{-1 - i\sqrt{3}}{2} \] ### Step 2: Express \( Z_0 \) in exponential form The root \( Z_0 \) can be expressed in polar form. The modulus \( r \) of \( Z_0 \) is: \[ r = \sqrt{\left(\frac{-1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] The argument \( \theta \) of \( Z_0 \) is: \[ \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{-1}{2}}\right) = \tan^{-1}(-\sqrt{3}) = \frac{2\pi}{3} \quad (\text{since it is in the second quadrant}) \] Thus, we can write: \[ Z_0 = e^{i\frac{2\pi}{3}} \] ### Step 3: Calculate \( Z_0^{81} \) and \( Z_0^{93} \) Using the property of exponents: \[ Z_0^{81} = \left(e^{i\frac{2\pi}{3}}\right)^{81} = e^{i\frac{2\pi \cdot 81}{3}} = e^{i54\pi} = e^{i0} = 1 \] \[ Z_0^{93} = \left(e^{i\frac{2\pi}{3}}\right)^{93} = e^{i\frac{2\pi \cdot 93}{3}} = e^{i62\pi} = e^{i0} = 1 \] ### Step 4: Substitute back into \( Z \) Now substituting back into the expression for \( Z \): \[ Z = 3 + 6i(1) - 3i(1) = 3 + 6i - 3i = 3 + 3i \] ### Step 5: Find the argument of \( Z \) The argument of a complex number \( Z = x + yi \) is given by: \[ \text{arg}(Z) = \tan^{-1}\left(\frac{y}{x}\right) \] For \( Z = 3 + 3i \): \[ \text{arg}(Z) = \tan^{-1}\left(\frac{3}{3}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Answer Thus, the argument of \( Z \) is: \[ \text{arg}(Z) = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If |z_(1)| = sqrt(2), |z_(2)| = sqrt(3) and |z_(1) + z_(2)| = sqrt((5-2sqrt(3))) then arg ((z_(1))/(z_(2))) (not neccessarily principal) is (a) (3pi)/(4) (b) (2pi)/(3) (c) (5pi)/(4) (d) (5pi)/(2)

If z=(1+2i)/(1-(1-i)^2), then arg(z) equals a. 0 b. pi/2 c. pi d. non of these

If a r g(z)<0, then a r g(-z)-"a r g"(z) equals pi (b) -pi (d) -pi/2 (d) pi/2

Find the value of z, if |z |= 4 and arg (z) = (5pi)/(6) .

If z_1,z_2,z_3 are any three roots of the equation z^6=(z+1)^6, then arg((z_1-z_3)/(z_2-z_3)) can be equal to

let z_1,z_2,z_3 and z_4 be the roots of the equation z^4 + z^3 +2=0 , then the value of prod_(r=1)^(4) (2z_r+1) is equal to :

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3

Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d arg(2z+1-2i)=pi//4.

Find the point of intersection of the curves a r g(z-3i)=(3pi)/4a n d arg(2z+1-2i)=pi//4.

If z_(i) (where i=1, 2,………………..6 ) be the roots of the equation z^(6)+z^(4)-2=0 , then Sigma_(i=1)^(6)|z_(i)|^(4) is equal to

CENGAGE ENGLISH-JEE 2019-MCQ
  1. The number of integral values of m for which the quadratic expression ...

    Text Solution

    |

  2. Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 i sin theta ) is pu...

    Text Solution

    |

  3. Let Z0 is the root of equation x^2+x+1=0 and Z=3+6i(Z0)^(81)-3i(Z0)^(9...

    Text Solution

    |

  4. Let z(1) and z(2) be any two non-zero complex numbers such that 3|z(1)...

    Text Solution

    |

  5. If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

    Text Solution

    |

  6. Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbe...

    Text Solution

    |

  7. Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR t...

    Text Solution

    |

  8. Let Z(1) and Z(2) be two complex numbers satisfying |Z(1)|=9 and |Z(2)...

    Text Solution

    |

  9. Consider the statement : " P(n) : n^(2)-n+41 is prime." Then, which on...

    Text Solution

    |

  10. If a ,b ,c are three distinct real numbers in G.P. and a+b+c=x b , the...

    Text Solution

    |

  11. Let a1, a2,...,a30 be an AP, S=sum(i=1)^(30)ai and T=sum(i=1)^(15)a(2i...

    Text Solution

    |

  12. The sum of series 1+6+(9(1^(2)+2^(2)+3^(2)))/(7) + (12(1^(2)+2^(2)+...

    Text Solution

    |

  13. Let a, b and c be the 7th, 11th and 13th terms, respectively, of a non...

    Text Solution

    |

  14. The sum of all two digit positive numbers which when divided by 7 yiel...

    Text Solution

    |

  15. If 5, 5r and 5r^(2) are the lengths of the sides of a triangle, then r...

    Text Solution

    |

  16. The sum of an infinite geometric series with positive terms is 3 and t...

    Text Solution

    |

  17. Let a1, a2, a3, ?a10 are in G.P. if a3/a1 =25 then a9/a5 is equal to ...

    Text Solution

    |

  18. If 19^(th) term of a non-zero A.P. is zero, then (49^(th) term) : (29^...

    Text Solution

    |

  19. The product of three consecutive terms of a GP is 512. If 4 is added t...

    Text Solution

    |

  20. Let S(k) = (1+2+3+...+k)/(k). If S(1)^(2) + s(2)^(2) +...+S(10)^(2) = ...

    Text Solution

    |