Home
Class 12
MATHS
If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5...

If `z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5` , then prove that `Im(z)=0`

A

R(z) `gt 0` and `I(z) gt 0`

B

`R(z) lt 0` and `I(z) gt 0`

C

`R(z) = -3`

D

I(z) = 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate \( z = \left( \frac{\sqrt{3}}{2} + \frac{i}{2} \right)^5 + \left( \frac{\sqrt{3}}{2} - \frac{i}{2} \right)^5 \) and show that the imaginary part of \( z \) is zero. ### Step-by-Step Solution: 1. **Express in Polar Form:** The complex numbers can be expressed in polar form. We recognize that: \[ \frac{\sqrt{3}}{2} + \frac{i}{2} = \cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) \] and \[ \frac{\sqrt{3}}{2} - \frac{i}{2} = \cos\left(\frac{\pi}{6}\right) - i \sin\left(\frac{\pi}{6}\right). \] Therefore, we can write: \[ z = \left( \cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) \right)^5 + \left( \cos\left(\frac{\pi}{6}\right) - i \sin\left(\frac{\pi}{6}\right) \right)^5. \] 2. **Use De Moivre's Theorem:** By De Moivre's theorem: \[ z = \left( \cos\left(\frac{\pi}{6}\right) + i \sin\left(\frac{\pi}{6}\right) \right)^5 = \cos\left(\frac{5\pi}{6}\right) + i \sin\left(\frac{5\pi}{6}\right) \] and \[ \left( \cos\left(\frac{\pi}{6}\right) - i \sin\left(\frac{\pi}{6}\right) \right)^5 = \cos\left(\frac{5\pi}{6}\right) - i \sin\left(\frac{5\pi}{6}\right). \] 3. **Combine the Results:** Thus, we can combine these results: \[ z = \left( \cos\left(\frac{5\pi}{6}\right) + i \sin\left(\frac{5\pi}{6}\right) \right) + \left( \cos\left(\frac{5\pi}{6}\right) - i \sin\left(\frac{5\pi}{6}\right) \right). \] This simplifies to: \[ z = 2 \cos\left(\frac{5\pi}{6}\right). \] 4. **Evaluate \( \cos\left(\frac{5\pi}{6}\right) \):** We know: \[ \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2}. \] Therefore: \[ z = 2 \left(-\frac{\sqrt{3}}{2}\right) = -\sqrt{3}. \] 5. **Identify the Real and Imaginary Parts:** The complex number \( z \) can be written as: \[ z = -\sqrt{3} + 0i. \] Hence, the imaginary part of \( z \) is: \[ \text{Im}(z) = 0. \] ### Conclusion: Thus, we have shown that \( \text{Im}(z) = 0 \).
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If z=((sqrt(3))/2+i/2)^5+((sqrt(3))/2-i/2)^5 , then prove that I m(z)=0.

If z=[(sqrt(3)/2)+i/2]^5+[((sqrt(3))/2)-i/2]^5 , then a. R e(z)=0 b. I m(z)=0 c. R e(z)>0 d. R e(z)>0,I m(z)<0

If z=((sqrt3)/(2)+(1)/(2)i)^5+((sqrt3)/(2)-(i)/(2))^5 , then (a) im(z)=0 (b) Re(z)gt0 , Im(z)gt0 (c) Re(z)gt0 , Im(z)lt0 (d) Re(z)=3

If z= ((sqrt3)/(2) + (i)/(2))^(107) + ((sqrt3)/(2)-(i)/(2))^(107) , then show that Im(z)=0

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

For z_(1)=""^(6)sqrt((1-i)//(1+isqrt(3))),z_(2)=""^(6)sqrt((1-i)//(sqrt(3)+i)) , z_(3)= ""^(6)sqrt((1+i) //(sqrt(3)-i)) , prove that |z_(1)|=|z_(2)|=|z_(3)|

If z = (-4 +2 sqrt3i)/(5 +sqrt3i) , then the value of arg(z) is

If z=i log(2-sqrt(3)) then cosz

if z = (sqrt 3 ) /(2) + (i)/(2) ( i=sqrt ( -1) ) , then ( 1 + iz + z^5 + iz^8)^9 is equal to:

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

CENGAGE ENGLISH-JEE 2019-MCQ
  1. Let Z0 is the root of equation x^2+x+1=0 and Z=3+6i(Z0)^(81)-3i(Z0)^(9...

    Text Solution

    |

  2. Let z(1) and z(2) be any two non-zero complex numbers such that 3|z(1)...

    Text Solution

    |

  3. If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

    Text Solution

    |

  4. Let (-2 -1/3 i)^3=(x+iy)/27 (i= sqrt(-1)) where x and y are real numbe...

    Text Solution

    |

  5. Let (z-alpha)/(z+alpha) is purely imaginary and |z|=2, alphaepsilonR t...

    Text Solution

    |

  6. Let Z(1) and Z(2) be two complex numbers satisfying |Z(1)|=9 and |Z(2)...

    Text Solution

    |

  7. Consider the statement : " P(n) : n^(2)-n+41 is prime." Then, which on...

    Text Solution

    |

  8. If a ,b ,c are three distinct real numbers in G.P. and a+b+c=x b , the...

    Text Solution

    |

  9. Let a1, a2,...,a30 be an AP, S=sum(i=1)^(30)ai and T=sum(i=1)^(15)a(2i...

    Text Solution

    |

  10. The sum of series 1+6+(9(1^(2)+2^(2)+3^(2)))/(7) + (12(1^(2)+2^(2)+...

    Text Solution

    |

  11. Let a, b and c be the 7th, 11th and 13th terms, respectively, of a non...

    Text Solution

    |

  12. The sum of all two digit positive numbers which when divided by 7 yiel...

    Text Solution

    |

  13. If 5, 5r and 5r^(2) are the lengths of the sides of a triangle, then r...

    Text Solution

    |

  14. The sum of an infinite geometric series with positive terms is 3 and t...

    Text Solution

    |

  15. Let a1, a2, a3, ?a10 are in G.P. if a3/a1 =25 then a9/a5 is equal to ...

    Text Solution

    |

  16. If 19^(th) term of a non-zero A.P. is zero, then (49^(th) term) : (29^...

    Text Solution

    |

  17. The product of three consecutive terms of a GP is 512. If 4 is added t...

    Text Solution

    |

  18. Let S(k) = (1+2+3+...+k)/(k). If S(1)^(2) + s(2)^(2) +...+S(10)^(2) = ...

    Text Solution

    |

  19. If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2)...

    Text Solution

    |

  20. Let x, y be positive real numbers and m, n be positive integers, The ...

    Text Solution

    |