Home
Class 12
MATHS
The sum of series 1+6+(9(1^(2)+2^(2)+...

The sum of series
`1+6+(9(1^(2)+2^(2)+3^(2)))/(7) + (12(1^(2)+2^(2)+3^(2)+4^(2)))/(9)+(15(1^(2)+2^(2)+...+5^(2)))/(11)+...` up to 15 terms is

A

7820

B

7830

C

7520

D

7510

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = 1 + 6 + \frac{9(1^2 + 2^2 + 3^2)}{7} + \frac{12(1^2 + 2^2 + 3^2 + 4^2)}{9} + \frac{15(1^2 + 2^2 + 3^2 + 4^2 + 5^2)}{11} + \ldots \] up to 15 terms, we first need to identify the pattern in the series. ### Step 1: Identify the pattern in the series 1. The first term is \(1\). 2. The second term is \(6\). 3. The third term is \(\frac{9(1^2 + 2^2 + 3^2)}{7}\). 4. The fourth term is \(\frac{12(1^2 + 2^2 + 3^2 + 4^2)}{9}\). 5. The fifth term is \(\frac{15(1^2 + 2^2 + 3^2 + 4^2 + 5^2)}{11}\). From this, we can see that: - The numerators follow the pattern \(3n\) for \(n = 1, 2, 3, \ldots\). - The denominators follow the pattern \(2n + 1\) starting from \(3\). - The sums in the numerators are the sums of squares of the first \(n\) natural numbers. ### Step 2: Write the nth term The nth term can be expressed as: \[ T_n = \frac{(3n)(1^2 + 2^2 + \ldots + n^2)}{(2n + 1)} \] Using the formula for the sum of the squares of the first \(n\) natural numbers: \[ 1^2 + 2^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \] We can substitute this into our expression for \(T_n\): \[ T_n = \frac{3n \cdot \frac{n(n + 1)(2n + 1)}{6}}{(2n + 1)} = \frac{n(n + 1)(2n + 1)}{4} \] ### Step 3: Find the sum of the first 15 terms Now, we need to find the sum \(S_{15} = \sum_{n=1}^{15} T_n\): \[ S_{15} = \sum_{n=1}^{15} \frac{n(n + 1)(2n + 1)}{4} \] This can be simplified as: \[ S_{15} = \frac{1}{4} \sum_{n=1}^{15} n(n + 1)(2n + 1) \] ### Step 4: Calculate the sum To compute \(\sum_{n=1}^{15} n(n + 1)(2n + 1)\), we can expand it: \[ n(n + 1)(2n + 1) = 2n^3 + 3n^2 + n \] Thus, we need to calculate: \[ \sum_{n=1}^{15} (2n^3 + 3n^2 + n) = 2\sum_{n=1}^{15} n^3 + 3\sum_{n=1}^{15} n^2 + \sum_{n=1}^{15} n \] Using the formulas: - \(\sum_{n=1}^{k} n = \frac{k(k + 1)}{2}\) - \(\sum_{n=1}^{k} n^2 = \frac{k(k + 1)(2k + 1)}{6}\) - \(\sum_{n=1}^{k} n^3 = \left(\frac{k(k + 1)}{2}\right)^2\) For \(k = 15\): 1. \(\sum_{n=1}^{15} n = \frac{15 \cdot 16}{2} = 120\) 2. \(\sum_{n=1}^{15} n^2 = \frac{15 \cdot 16 \cdot 31}{6} = 1240\) 3. \(\sum_{n=1}^{15} n^3 = \left(\frac{15 \cdot 16}{2}\right)^2 = 14400\) Now substituting these values: \[ S_{15} = \frac{1}{4} \left(2 \cdot 14400 + 3 \cdot 1240 + 120\right) \] Calculating: \[ = \frac{1}{4} \left(28800 + 3720 + 120\right) = \frac{1}{4} \cdot 32740 = 8185 \] ### Final Answer Thus, the sum of the series up to 15 terms is: \[ \boxed{8185} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!) +.. Is

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

(1^(2)-2^(2)+3^(2)) + (4^(2)-5^(2)+6^(2))+(7^(2)-8^(2)+9^(2))….30 terms

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

Find the sum of the series 1 . 3^(2) + 2.5 ^(2) + 3.7^(2) +…+ to n terms

Find sum of first 15 term of series 1+6+(9(1^2+2^2+3^2))/7+(12(1^2+2^2+3^2+4^2))/9+...... (1) 7620 (2) 7280 (3) 7820 (4) 7067

Sum to n terms the series (3)/(1 ^(2) . 2 ^(2)) + (5)/( 2 ^(2) . 3 ^(2)) + (7)/( 3 ^(2) . 4 ^(2)) +.............

The sum to n terms of series 1+(1+1/2+1/(2^2))+(1+1/2+1/(2^2)+1/(2^3))+ is

Sum of series 5/(3^2 7^2)+9/(7^2 11^2)+13/(11^2 15^2)+....oo is

The sum of the series 1 + (1)/(3^(2)) + (1 *4)/(1*2) (1)/(3^(4))+( 1 * 4 * 7)/(1 *2*3)(1)/(3^(6)) + ..., is (a) ((3)/(2))^((1)/(3)) (b) ((5)/(4))^((1)/(3)) (c) ((3)/(2))^((1)/(6)) (d) None of these

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If a ,b ,c are three distinct real numbers in G.P. and a+b+c=x b , the...

    Text Solution

    |

  2. Let a1, a2,...,a30 be an AP, S=sum(i=1)^(30)ai and T=sum(i=1)^(15)a(2i...

    Text Solution

    |

  3. The sum of series 1+6+(9(1^(2)+2^(2)+3^(2)))/(7) + (12(1^(2)+2^(2)+...

    Text Solution

    |

  4. Let a, b and c be the 7th, 11th and 13th terms, respectively, of a non...

    Text Solution

    |

  5. The sum of all two digit positive numbers which when divided by 7 yiel...

    Text Solution

    |

  6. If 5, 5r and 5r^(2) are the lengths of the sides of a triangle, then r...

    Text Solution

    |

  7. The sum of an infinite geometric series with positive terms is 3 and t...

    Text Solution

    |

  8. Let a1, a2, a3, ?a10 are in G.P. if a3/a1 =25 then a9/a5 is equal to ...

    Text Solution

    |

  9. If 19^(th) term of a non-zero A.P. is zero, then (49^(th) term) : (29^...

    Text Solution

    |

  10. The product of three consecutive terms of a GP is 512. If 4 is added t...

    Text Solution

    |

  11. Let S(k) = (1+2+3+...+k)/(k). If S(1)^(2) + s(2)^(2) +...+S(10)^(2) = ...

    Text Solution

    |

  12. If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2)...

    Text Solution

    |

  13. Let x, y be positive real numbers and m, n be positive integers, The ...

    Text Solution

    |

  14. Consider a class of 5 girls and 7 boys. The number of different teams ...

    Text Solution

    |

  15. Let S be the set of all triangles in the xy-plane, each having one ver...

    Text Solution

    |

  16. The number of natural numbers less than 7,000 which can be formed by u...

    Text Solution

    |

  17. If set A={1, 2, 3, ?2, }, then the find the number of onto functions f...

    Text Solution

    |

  18. Let S={1,2,3, …, 100}. The number of non-empty subsets A to S such tha...

    Text Solution

    |

  19. Consider three boxes, each containing 10 balls labelled 1, 2, …,10. Su...

    Text Solution

    |

  20. Let Z be the set of integers. If A = {x in Z : 2^((x + 2)(x^(2) - 5x +...

    Text Solution

    |