Home
Class 12
MATHS
Let S(k) = (1+2+3+...+k)/(k). If S(1)^(2...

Let `S_(k) = (1+2+3+...+k)/(k)`. If `S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A`, then A is equal to

A

303

B

283

C

156

D

301

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A \) given that \[ S_1^2 + S_2^2 + \ldots + S_{10}^2 = \frac{5}{12} A \] where \[ S_k = \frac{1 + 2 + 3 + \ldots + k}{k} \] ### Step 1: Calculate \( S_k \) The sum of the first \( k \) natural numbers is given by the formula: \[ 1 + 2 + 3 + \ldots + k = \frac{k(k + 1)}{2} \] Thus, we can express \( S_k \) as: \[ S_k = \frac{\frac{k(k + 1)}{2}}{k} = \frac{k + 1}{2} \] ### Step 2: Calculate \( S_k^2 \) Now we find \( S_k^2 \): \[ S_k^2 = \left(\frac{k + 1}{2}\right)^2 = \frac{(k + 1)^2}{4} \] ### Step 3: Calculate \( S_1^2 + S_2^2 + \ldots + S_{10}^2 \) Now we need to compute: \[ S_1^2 + S_2^2 + \ldots + S_{10}^2 = \sum_{k=1}^{10} S_k^2 = \sum_{k=1}^{10} \frac{(k + 1)^2}{4} \] Factoring out \( \frac{1}{4} \): \[ = \frac{1}{4} \sum_{k=1}^{10} (k + 1)^2 \] ### Step 4: Simplify the summation The expression \( (k + 1)^2 \) can be rewritten as: \[ (k + 1)^2 = k^2 + 2k + 1 \] Thus, \[ \sum_{k=1}^{10} (k + 1)^2 = \sum_{k=1}^{10} k^2 + \sum_{k=1}^{10} 2k + \sum_{k=1}^{10} 1 \] Using the formulas for these sums: - The sum of the first \( n \) natural numbers is: \[ \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \] - The sum of the squares of the first \( n \) natural numbers is: \[ \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \] For \( n = 10 \): 1. \( \sum_{k=1}^{10} k^2 = \frac{10(11)(21)}{6} = 385 \) 2. \( \sum_{k=1}^{10} k = \frac{10(11)}{2} = 55 \) 3. \( \sum_{k=1}^{10} 1 = 10 \) Combining these: \[ \sum_{k=1}^{10} (k + 1)^2 = 385 + 2 \cdot 55 + 10 = 385 + 110 + 10 = 505 \] ### Step 5: Substitute back into the equation Now substituting back into our equation for \( S_1^2 + S_2^2 + \ldots + S_{10}^2 \): \[ S_1^2 + S_2^2 + \ldots + S_{10}^2 = \frac{1}{4} \cdot 505 = \frac{505}{4} \] ### Step 6: Set up the equation for \( A \) Now we have: \[ \frac{505}{4} = \frac{5}{12} A \] ### Step 7: Solve for \( A \) Cross-multiplying gives: \[ 505 \cdot 12 = 5 \cdot 4 A \] \[ 6060 = 20A \] \[ A = \frac{6060}{20} = 303 \] ### Final Answer Thus, the value of \( A \) is: \[ \boxed{303} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let s_(1), s_(2), s_(3).... and t_(1), t_(2), t_(3) .... are two arithmetic sequences such that s_(1) = t_(1) != 0, s_(2) = 2t_(2) and sum_(i=1)^(10) s_(i) = sum_(i=1)^(15) t_(i) . Then the value of (s_(2) -s_(1))/(t_(2) - t_(1)) is

Let z_(k) = cos((2kpi)/(10)) -isin ((2kpi)/(10)), k = 1,2,…..,9

In an AP, If S_(n)=3n^(2)+5n and a_(k)=164, then find the value of k.

In an AP, If S_(n)=3n^(2)+5n and a_(k)=164, then find the value of k.

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

If S_(1),S_(2),S_(3) be respectively the sum of n, 2n and 3n terms of a GP, then (S_(1)(S_(3)-S_(2)))/((S_(2)-S_(1))^(2)) is equal to

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Let S_(1) = sum_(j=1)^(10) j(j-1).""^(10)C_(j), S_(2) = sum_(j=1)^(10)j.""^(10)C_(j) , and S_(3) = sum_(j=1)^(10) j^(2).""^(10)C_(j) . Statement 1 : S_(3) = 55 xx 2^(9) . Statement 2 : S_(1) = 90 xx 2^(8) and S_(2) = 10 xx 2^(8) .

Let each of the circles, S_(1)=x^(2)+y^(2)+4y-1=0 , S_(2)=x^(2)+y^(2)+6x+y+8=0 , S_(3)=x^(2)+y^(2)-4x-4y-37=0 touches the other two. Let P_(1), P_(2), P_(3) be the points of contact of S_(1) and S_(2), S_(2) and S_(3), S_(3) and S_(1) respectively and C_(1), C_(2), C_(3) be the centres of S_(1), S_(2), S_(3) respectively. Q. The co-ordinates of P_(1) are :

Let n inN and k be an integer ge0 such that S_(k)(n)=1^(k)+2^(k)+3^(k)+ . . . +n^(k) Statement-1: S_(4)(n)=(n)/(30)(n+1)(2n+1)(3n^(2)+3n+1) Statement -2: .^(k+1)C_(1)S_(k)(n)+.^(k+1)C_(2)S_(k-1)(n)+ . . . +.^(k+1)C_(k)S_(1)(n)+.^(k+1)C_(k+1)S_(0)(n)=(n+1)^(k+1)-1

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If 19^(th) term of a non-zero A.P. is zero, then (49^(th) term) : (29^...

    Text Solution

    |

  2. The product of three consecutive terms of a GP is 512. If 4 is added t...

    Text Solution

    |

  3. Let S(k) = (1+2+3+...+k)/(k). If S(1)^(2) + s(2)^(2) +...+S(10)^(2) = ...

    Text Solution

    |

  4. If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2)...

    Text Solution

    |

  5. Let x, y be positive real numbers and m, n be positive integers, The ...

    Text Solution

    |

  6. Consider a class of 5 girls and 7 boys. The number of different teams ...

    Text Solution

    |

  7. Let S be the set of all triangles in the xy-plane, each having one ver...

    Text Solution

    |

  8. The number of natural numbers less than 7,000 which can be formed by u...

    Text Solution

    |

  9. If set A={1, 2, 3, ?2, }, then the find the number of onto functions f...

    Text Solution

    |

  10. Let S={1,2,3, …, 100}. The number of non-empty subsets A to S such tha...

    Text Solution

    |

  11. Consider three boxes, each containing 10 balls labelled 1, 2, …,10. Su...

    Text Solution

    |

  12. Let Z be the set of integers. If A = {x in Z : 2^((x + 2)(x^(2) - 5x +...

    Text Solution

    |

  13. There are m men and two women participating in a chess tournament. Eac...

    Text Solution

    |

  14. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  15. The coefficient of t^4 in ((1-t^6)/(1-t))^3 (a) 18 (b) 12 ...

    Text Solution

    |

  16. If Sigma(i=1)^(20) ((""^(20)C(i-1))/(""^(20)C(i)+""^(20)C(i-1)))^(3)=(...

    Text Solution

    |

  17. If the third term in expansion of (1+x^(log2x))^5 is 2560 then x is eq...

    Text Solution

    |

  18. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  19. If Sigma(r=0)^(25) (""^(50)C(r)""^(50-r)C(25-r))=K(""^(50)C(25)), th...

    Text Solution

    |

  20. If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum ...

    Text Solution

    |