Home
Class 12
MATHS
If Sigma(i=1)^(20) ((""^(20)C(i-1))/(""^...

If `Sigma_(i=1)^(20) ((""^(20)C_(i-1))/(""^(20)C_(i)+""^(20)C_(i-1)))^(3)=(k)/(21)`, then k equals

A

200

B

50

C

100

D

400

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the summation and find the value of \( k \) such that: \[ \sum_{i=1}^{20} \left( \frac{\binom{20}{i-1}}{\binom{20}{i} + \binom{20}{i-1}} \right)^3 = \frac{k}{21} \] ### Step 1: Simplify the Fraction Inside the Summation Using the identity for binomial coefficients: \[ \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \] we can rewrite the denominator: \[ \binom{20}{i} + \binom{20}{i-1} = \binom{21}{i} \] Thus, we can express the fraction as: \[ \frac{\binom{20}{i-1}}{\binom{21}{i}} \] ### Step 2: Rewrite the Summation Now, substituting this back into the summation gives us: \[ \sum_{i=1}^{20} \left( \frac{\binom{20}{i-1}}{\binom{21}{i}} \right)^3 \] ### Step 3: Express the Binomial Coefficient We can express the binomial coefficient as: \[ \frac{\binom{20}{i-1}}{\binom{21}{i}} = \frac{\binom{20}{i-1}}{\frac{21}{i} \binom{20}{i-1}} = \frac{i}{21} \] ### Step 4: Substitute Back into the Summation Now substituting this back into the summation, we have: \[ \sum_{i=1}^{20} \left( \frac{i}{21} \right)^3 = \frac{1}{21^3} \sum_{i=1}^{20} i^3 \] ### Step 5: Calculate the Sum of Cubes The formula for the sum of the first \( n \) cubes is: \[ \sum_{i=1}^{n} i^3 = \left( \frac{n(n+1)}{2} \right)^2 \] For \( n = 20 \): \[ \sum_{i=1}^{20} i^3 = \left( \frac{20 \cdot 21}{2} \right)^2 = (210)^2 = 44100 \] ### Step 6: Substitute Back to Find the Summation Now substituting this back into our expression: \[ \sum_{i=1}^{20} \left( \frac{i}{21} \right)^3 = \frac{1}{21^3} \cdot 44100 \] ### Step 7: Calculate the Final Value Calculating \( \frac{44100}{21^3} \): \[ 21^3 = 9261 \] So we have: \[ \frac{44100}{9261} \] ### Step 8: Simplify the Result Now we simplify: \[ \frac{44100 \div 441}{9261 \div 441} = \frac{100}{21} \] ### Step 9: Relate to k From our original equation, we have: \[ \frac{100}{21} = \frac{k}{21} \] Thus, we find: \[ k = 100 \] ### Final Answer The value of \( k \) is: \[ \boxed{100} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If sum_(i=1)^(n-1) ((""^(n)C_(i-1))/(""^(n)C_(i)+""^(n)C_(i-1)))^(3) = (36)/(13) , , then n is equal to

sum_(i=1)^20 [(.^20C_(i-1))/(.^20C_i+.^20C_(i-1))]^3=k/21 then find the value of k. (a) 400 (b) 100 (c) 50 (d) 200

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

The sum of the series Sigma_(r = 0)^(10) ""^(20)C_(r) " is " 2^(19) + (""^(20)C_(10))/(2)

The value of Sigma_(i=1)^(n)(.^(n+1)C_(i)-.^(n)C_(i)) is equal to

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is not divisible by :

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is divisible by :

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is not divisible by :

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the fractional part of the number (2^(403))/(15) is (k)/(15) then k...

    Text Solution

    |

  2. The coefficient of t^4 in ((1-t^6)/(1-t))^3 (a) 18 (b) 12 ...

    Text Solution

    |

  3. If Sigma(i=1)^(20) ((""^(20)C(i-1))/(""^(20)C(i)+""^(20)C(i-1)))^(3)=(...

    Text Solution

    |

  4. If the third term in expansion of (1+x^(log2x))^5 is 2560 then x is eq...

    Text Solution

    |

  5. The positive value of lambda for which the coefficient of x^(2) in the...

    Text Solution

    |

  6. If Sigma(r=0)^(25) (""^(50)C(r)""^(50-r)C(25-r))=K(""^(50)C(25)), th...

    Text Solution

    |

  7. If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum ...

    Text Solution

    |

  8. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  9. Let (x+10)^(50)+(x-10)^(50)=a(0)+a(1)x+a(2)x^(2)+...+a(50)x^(50) for a...

    Text Solution

    |

  10. Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n...

    Text Solution

    |

  11. Ratio of the 5^(th) term from the beginning to the 5^(th) term from th...

    Text Solution

    |

  12. If ""^(n)C(4),""^(n)C(5) and ""^(n)C(6) are in A.P. then the value of ...

    Text Solution

    |

  13. Number of irrational terms in expansion of (2^(1/5) + 3^(1/10))^60 is

    Text Solution

    |

  14. Two integers are selected at random from the set {1, 2, …, 11}. Given ...

    Text Solution

    |

  15. Let S={1,2,...,20} A subset B of S is said to be "nice", if the sum of...

    Text Solution

    |

  16. In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 o...

    Text Solution

    |

  17. In a game, a man wins Rs 100 if he gets 5 or 6 on a throw of a fair di...

    Text Solution

    |

  18. If the Boolean expression (p oplusq)wedge (~p Theta q) is equivalent t...

    Text Solution

    |

  19. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  20. Given three statements P: 5 is a prime number, Q:7 is a factor of 192,...

    Text Solution

    |