Home
Class 12
MATHS
The value of r for which .^(20)C(r ), ...

The value of r for which
`.^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r )` is maximum, is

A

20

B

15

C

11

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( r \) for which the expression \[ \binom{20}{r} \cdot \binom{20}{r-1} \cdot \sum_{k=0}^{2} \binom{20}{k} \] is maximized. ### Step-by-step Solution: 1. **Understanding the Expression**: The expression can be rewritten using the binomial theorem. The sum \( \sum_{k=0}^{2} \binom{20}{k} \) represents the sum of the first three binomial coefficients from the expansion of \( (1+x)^{20} \). 2. **Using the Binomial Theorem**: According to the binomial theorem, we have: \[ (1+x)^{20} = \sum_{k=0}^{20} \binom{20}{k} x^k \] Therefore, we can express our original sum in terms of the coefficients of \( (1+x)^{20} \). 3. **Combining the Terms**: The expression can be interpreted as the coefficient of \( x^r \) in the expansion of: \[ (1+x)^{20} \cdot (1+x)^{20} = (1+x)^{40} \] This means we are looking for the coefficient of \( x^r \) in \( (1+x)^{40} \). 4. **Finding the Coefficient**: The coefficient of \( x^r \) in \( (1+x)^{40} \) is given by \( \binom{40}{r} \). 5. **Maximizing the Coefficient**: The binomial coefficient \( \binom{40}{r} \) is maximized when \( r \) is around \( \frac{40}{2} = 20 \). This is a property of binomial coefficients, where they reach their maximum value at \( n/2 \). 6. **Conclusion**: Therefore, the value of \( r \) for which the expression is maximized is: \[ r = 20 \] ### Final Answer: The value of \( r \) for which the expression is maximum is \( \boxed{20} \).
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r(0 le r le 30) for which S = .^(20)C_(r).^(10)C_(0) + .^(20)C_(r-1).^(10)C_(1) + ........ + .^(20)C_(0).^(10)C_(r) is minimum can not be

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

let 2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20) . Then sum of this series is

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If Sigma(r=0)^(25) (""^(50)C(r)""^(50-r)C(25-r))=K(""^(50)C(25)), th...

    Text Solution

    |

  2. If the middle term of the expansion of (x^3/3+3/x)^8 is 5670 then sum ...

    Text Solution

    |

  3. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  4. Let (x+10)^(50)+(x-10)^(50)=a(0)+a(1)x+a(2)x^(2)+...+a(50)x^(50) for a...

    Text Solution

    |

  5. Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n...

    Text Solution

    |

  6. Ratio of the 5^(th) term from the beginning to the 5^(th) term from th...

    Text Solution

    |

  7. If ""^(n)C(4),""^(n)C(5) and ""^(n)C(6) are in A.P. then the value of ...

    Text Solution

    |

  8. Number of irrational terms in expansion of (2^(1/5) + 3^(1/10))^60 is

    Text Solution

    |

  9. Two integers are selected at random from the set {1, 2, …, 11}. Given ...

    Text Solution

    |

  10. Let S={1,2,...,20} A subset B of S is said to be "nice", if the sum of...

    Text Solution

    |

  11. In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 o...

    Text Solution

    |

  12. In a game, a man wins Rs 100 if he gets 5 or 6 on a throw of a fair di...

    Text Solution

    |

  13. If the Boolean expression (p oplusq)wedge (~p Theta q) is equivalent t...

    Text Solution

    |

  14. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  15. Given three statements P: 5 is a prime number, Q:7 is a factor of 192,...

    Text Solution

    |

  16. If q is false and (p^^q)harr r is also true then which of the followin...

    Text Solution

    |

  17. The Boolean expression ~(pvvq)vv(~p^^q) is equivalent to (1) ~p (2) p ...

    Text Solution

    |

  18. (~pvv~q) is logically equivalent to

    Text Solution

    |

  19. Average height & variance of 5 students in a class is 150 and 18 respe...

    Text Solution

    |

  20. A data consists of n observations x(1), x(2), ..., x(n). If Sigma(i=1)...

    Text Solution

    |