Home
Class 12
MATHS
Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)...

Let `S_n=1+q+q^2 +...+q^n` and `T_n =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n` If `alpha T_100=^101C_1 +^101C_2` x `S_1 ...+^101C_101` x`S_100,` then the value of `alpha` is equal to (A) `2^99` (B) `2^101` (C) `2^100` (D) `-2^100`

A

`2^(100)`

B

200

C

`2^(99)`

D

202

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha \) given the expressions for \( S_n \) and \( T_n \) and the equation involving binomial coefficients. ### Step 1: Define \( S_n \) and \( T_n \) The expression for \( S_n \) is given as: \[ S_n = 1 + q + q^2 + \ldots + q^n \] This is a geometric series with first term \( a = 1 \) and common ratio \( r = q \). The sum of a geometric series can be calculated using the formula: \[ S_n = \frac{a(r^{n+1} - 1)}{r - 1} = \frac{1(q^{n+1} - 1)}{q - 1} = \frac{q^{n+1} - 1}{q - 1} \] The expression for \( T_n \) is given as: \[ T_n = 1 + \left(\frac{q + 1}{2}\right) + \left(\frac{q + 1}{2}\right)^2 + \ldots + \left(\frac{q + 1}{2}\right)^n \] This is also a geometric series with first term \( a = 1 \) and common ratio \( r = \frac{q + 1}{2} \). The sum is: \[ T_n = \frac{1\left(\left(\frac{q + 1}{2}\right)^{n+1} - 1\right)}{\frac{q + 1}{2} - 1} = \frac{\left(\frac{q + 1}{2}\right)^{n+1} - 1}{\frac{q - 1}{2}} = \frac{2\left(\left(\frac{q + 1}{2}\right)^{n+1} - 1\right)}{q - 1} \] ### Step 2: Evaluate \( T_{100} \) Substituting \( n = 100 \) into the expression for \( T_n \): \[ T_{100} = \frac{2\left(\left(\frac{q + 1}{2}\right)^{101} - 1\right)}{q - 1} \] ### Step 3: Set up the equation involving \( \alpha \) The problem states: \[ \alpha T_{100} = \binom{101}{1} S_1 + \binom{101}{2} S_2 + \ldots + \binom{101}{101} S_{100} \] We can express the right-hand side in summation form: \[ \alpha T_{100} = \sum_{r=1}^{101} \binom{101}{r} S_{r-1} \] ### Step 4: Substitute \( S_{r-1} \) Using the formula for \( S_n \): \[ S_{r-1} = \frac{q^r - 1}{q - 1} \] Thus, the right-hand side becomes: \[ \alpha T_{100} = \sum_{r=1}^{101} \binom{101}{r} \frac{q^r - 1}{q - 1} \] This can be separated into two sums: \[ \alpha T_{100} = \frac{1}{q - 1} \left( \sum_{r=1}^{101} \binom{101}{r} q^r - \sum_{r=1}^{101} \binom{101}{r} \right) \] The second sum simplifies to \( 2^{101} - 1 \) (the sum of all binomial coefficients). ### Step 5: Evaluate the first sum Using the binomial theorem: \[ \sum_{r=0}^{101} \binom{101}{r} q^r = (1 + q)^{101} \] Thus, \[ \sum_{r=1}^{101} \binom{101}{r} q^r = (1 + q)^{101} - 1 \] ### Step 6: Substitute back into the equation Now we have: \[ \alpha T_{100} = \frac{1}{q - 1} \left( (1 + q)^{101} - 1 - (2^{101} - 1) \right) \] Simplifying gives: \[ \alpha T_{100} = \frac{(1 + q)^{101} - 2^{101}}{q - 1} \] ### Step 7: Solve for \( \alpha \) We know \( T_{100} \) from earlier: \[ T_{100} = \frac{2\left(\left(\frac{q + 1}{2}\right)^{101} - 1\right)}{q - 1} \] Substituting \( T_{100} \) into the equation: \[ \alpha \cdot \frac{2\left(\left(\frac{q + 1}{2}\right)^{101} - 1\right)}{q - 1} = \frac{(1 + q)^{101} - 2^{101}}{q - 1} \] Cancelling \( \frac{1}{q - 1} \) gives: \[ \alpha \cdot 2\left(\frac{(q + 1)^{101}}{2^{101}} - 1\right) = (1 + q)^{101} - 2^{101} \] ### Step 8: Final Calculation Solving for \( \alpha \) gives: \[ \alpha = 2^{100} \] Thus, the value of \( \alpha \) is: \[ \boxed{2^{100}} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

If S_n = 1+1/2 + 1/2^2+...+1/2^(n-1) and 2-S_n < 1/100, then the least value of n must be :

If the number of terms in the expansion of (1+x)^(101)(1+x^(2)-x)^(100) is n, then the value of (n)/(25) is euqal to

If alpha is the only positive root of (2^(2014)-1)x^2+(2-2^(2014))x-1=0 . Then the value of (alpha^(2014)-1)p^2+(1-alpha^(2015))p q+1 is equal to (a) 1 (b) 0 (c) pq (d) p^2+p q+1

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

If alpha, beta in C are distinct roots of the equation x^2+1=0 then alpha^(101)+beta^(107) is equal to

If f(x)=(x-1)^(100)(x-2)^(2(99))(x-3)^(3(98))…(x-100)^(100), then the value of (f'(101))/(f(101)) is

The coefficient of x^(101) in the expansion of (1 - x) (1- 2x) (1 - 2^(2) x) - (1 - 2^(101) x) is

If r^[th] and (r+1)^[th] term in the expansion of (p+q)^n are equal, then [(n+1)q]/[r(p+q)] is (a) 1/2 (b) 1/4 (c) 1 (d) 0

CENGAGE ENGLISH-JEE 2019-MCQ
  1. The value of r for which .^(20)C(r ), .^(20)C(r - 1) .^(20)C(1) + .^...

    Text Solution

    |

  2. Let (x+10)^(50)+(x-10)^(50)=a(0)+a(1)x+a(2)x^(2)+...+a(50)x^(50) for a...

    Text Solution

    |

  3. Let Sn=1+q+q^2 +...+q^n and Tn =1+((q+1)/2)+((q+1)/2)^2+...((q+1)/2)^n...

    Text Solution

    |

  4. Ratio of the 5^(th) term from the beginning to the 5^(th) term from th...

    Text Solution

    |

  5. If ""^(n)C(4),""^(n)C(5) and ""^(n)C(6) are in A.P. then the value of ...

    Text Solution

    |

  6. Number of irrational terms in expansion of (2^(1/5) + 3^(1/10))^60 is

    Text Solution

    |

  7. Two integers are selected at random from the set {1, 2, …, 11}. Given ...

    Text Solution

    |

  8. Let S={1,2,...,20} A subset B of S is said to be "nice", if the sum of...

    Text Solution

    |

  9. In a class of 60 students, 40 opted for NCC, 30 opted for NSS and 20 o...

    Text Solution

    |

  10. In a game, a man wins Rs 100 if he gets 5 or 6 on a throw of a fair di...

    Text Solution

    |

  11. If the Boolean expression (p oplusq)wedge (~p Theta q) is equivalent t...

    Text Solution

    |

  12. The logical statement [~(~pvvq)vv(p^^r)]^^(~q^^r) is equivalent to (a)...

    Text Solution

    |

  13. Given three statements P: 5 is a prime number, Q:7 is a factor of 192,...

    Text Solution

    |

  14. If q is false and (p^^q)harr r is also true then which of the followin...

    Text Solution

    |

  15. The Boolean expression ~(pvvq)vv(~p^^q) is equivalent to (1) ~p (2) p ...

    Text Solution

    |

  16. (~pvv~q) is logically equivalent to

    Text Solution

    |

  17. Average height & variance of 5 students in a class is 150 and 18 respe...

    Text Solution

    |

  18. A data consists of n observations x(1), x(2), ..., x(n). If Sigma(i=1)...

    Text Solution

    |

  19. The mean of five observations is 5 and their variance is 9.20. If thr...

    Text Solution

    |

  20. The mean and standart deviation of five observations x1,x2,x3,x4,x5 an...

    Text Solution

    |