Home
Class 12
MATHS
The system of linear equations x + y +...

The system of linear equations
x + y + z = 2
2x + 3y + 2z = 5
`2x + 3y + (a^(2) - 1)z = a + 1`

A

has infinitely many solutions for a = 4

B

is inconsisten when `|a| = sqrt(3)`

C

is inconsistent when a = 4

D

has a unique solution for `|a| = sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of linear equations given by: 1. \( x + y + z = 2 \) (Equation 1) 2. \( 2x + 3y + 2z = 5 \) (Equation 2) 3. \( 2x + 3y + (a^2 - 1)z = a + 1 \) (Equation 3) we will use Cramer's Rule to determine the conditions under which the system has a unique solution, no solution, or infinitely many solutions. ### Step 1: Form the Coefficient Matrix and Calculate the Determinant \( D \) The coefficient matrix \( A \) is given by: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 2 & 3 & a^2 - 1 \end{bmatrix} \] To find the determinant \( D \) of matrix \( A \): \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 2 & 3 & a^2 - 1 \end{vmatrix} \] Using the determinant formula for a 3x3 matrix: \[ D = 1 \cdot \begin{vmatrix} 3 & 2 \\ 3 & a^2 - 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 2 \\ 2 & a^2 - 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 3 & 2 \\ 3 & a^2 - 1 \end{vmatrix} = 3(a^2 - 1) - 6 = 3a^2 - 9 \) 2. \( \begin{vmatrix} 2 & 2 \\ 2 & a^2 - 1 \end{vmatrix} = 2(a^2 - 1) - 4 = 2a^2 - 6 \) 3. \( \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} = 0 \) Thus, we have: \[ D = 1(3a^2 - 9) - 1(2a^2 - 6) + 0 \] \[ D = 3a^2 - 9 - 2a^2 + 6 = a^2 - 3 \] ### Step 2: Determine Conditions for Solutions For the system to have a unique solution, \( D \) must be non-zero: \[ D \neq 0 \implies a^2 - 3 \neq 0 \implies a^2 \neq 3 \implies a \neq \pm \sqrt{3} \] For the system to have no solution, we need to check the determinant of the augmented matrix \( D_1 \). ### Step 3: Form the Augmented Matrix and Calculate \( D_1 \) The augmented matrix is: \[ \begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 2 & 3 & 2 & | & 5 \\ 2 & 3 & a^2 - 1 & | & a + 1 \end{bmatrix} \] The determinant \( D_1 \) is given by: \[ D_1 = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & 5 \\ 2 & 3 & a + 1 \end{vmatrix} \] Calculating \( D_1 \): \[ D_1 = 1 \cdot \begin{vmatrix} 3 & 5 \\ 3 & a + 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 5 \\ 2 & a + 1 \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 3 & 5 \\ 3 & a + 1 \end{vmatrix} = 3(a + 1) - 15 = 3a - 12 \) 2. \( \begin{vmatrix} 2 & 5 \\ 2 & a + 1 \end{vmatrix} = 2(a + 1) - 10 = 2a - 8 \) 3. \( \begin{vmatrix} 2 & 3 \\ 2 & 3 \end{vmatrix} = 0 \) Thus, we have: \[ D_1 = 1(3a - 12) - 1(2a - 8) + 0 \] \[ D_1 = 3a - 12 - 2a + 8 = a - 4 \] ### Step 4: Conditions for No Solution For the system to have no solution, we need: \[ D = 0 \quad \text{and} \quad D_1 \neq 0 \] From \( D = 0 \): \[ a^2 - 3 = 0 \implies a = \pm \sqrt{3} \] From \( D_1 \neq 0 \): \[ a - 4 \neq 0 \implies a \neq 4 \] ### Conclusion Thus, the system has: - A unique solution when \( a \neq \pm \sqrt{3} \) and \( a \neq 4 \). - No solution when \( a = \sqrt{3} \) or \( a = -\sqrt{3} \) and \( a \neq 4 \).
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

The system of linear equations x - 2y + z = 4 2x + 3y - 4z = 1 x - 9y + (2a + 3)z = 5a + 1 has infinitely many solution for:

Examine the consistency of the system of equations x + y + z = 1 2x + 3y + 2z = 2 a x + a y + 2a z = 4

If the system of linear equations x+ y +z = 5 x+2y +2z = 6 x + 3y + lambdaz = mu, (lambda, mu in R) has infinitely many solutions, then the value of lambda + mu is

Solve the following system of linear equations using matrix method : 3x + y + z = 1, 2x + 2z =0, 5x + y + 2z = 0 .

If the system of linear equations x-2y + kz = 1, 2x + y+ z = 2, 3x-y-kz = 3 has a solution (x, y, z), z ne 0 , then (x, y) lies on the straight line whose equation is

The system of linear equations x + y + z = 0 (2x)/(a) + (3y)/(b) + (4z)/(c ) = 0 (x)/(a) + (y)/(b) + (z)/(c ) = 0 has non trivia solution then

Examine the consistency of the system of equations 5x -y + 4z = 5," " 2x + 3y + 5z = 2," " 5x -2y + 6z = 1

Solve the following system of equations 3x - 4y + 5z = 0, x + y - 2z = 0, 2x + 3y + z = 0

Solve system of linear equations, using matrix method, 2x + 3y +3z = 5 x-2 y + z =-4 , 3x-y - 2z= 3

Solve system of linear equations, using matrix method, 2x + 3y +3z = 5" " x-2 y + z =-4" " 3x-y - 2z= 3

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the sum of the deviations of 50 observations from 30 is 50, then th...

    Text Solution

    |

  2. Mean and variance of five observations are 4 and 5.2 respectively. If ...

    Text Solution

    |

  3. The system of linear equations x + y + z = 2 2x + 3y + 2z = 5 2...

    Text Solution

    |

  4. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  5. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  6. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  7. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  8. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  9. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  10. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  11. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  12. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  13. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  14. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  15. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  16. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  17. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  18. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  19. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  20. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |