Home
Class 12
MATHS
An ordered pair (alpha, beta) for which ...

An ordered pair `(alpha, beta)` for which the system of linear equations `(1+alpha)x+betay+z=2`, `alphax+(1+beta)y+z=3` and `alphax+betay+2z=2` has unique solution is: (a) (2,4) (b) (-3,1) (c) (-4,2) (d) (1,-3)

A

(1, -3)

B

(-3, 1)

C

(2, 4)

D

(-4, 2)

Text Solution

AI Generated Solution

The correct Answer is:
To find the ordered pair \((\alpha, \beta)\) for which the system of linear equations has a unique solution, we need to analyze the given equations: 1. \((1 + \alpha)x + \beta y + z = 2\) (Equation 1) 2. \(\alpha x + (1 + \beta)y + z = 3\) (Equation 2) 3. \(\alpha x + \beta y + 2z = 2\) (Equation 3) ### Step 1: Write the system in matrix form We can express the system of equations in matrix form \(A\mathbf{x} = \mathbf{b}\), where: \[ A = \begin{bmatrix} 1 + \alpha & \beta & 1 \\ \alpha & 1 + \beta & 1 \\ \alpha & \beta & 2 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix} \] ### Step 2: Find the determinant of the coefficient matrix For the system to have a unique solution, the determinant of matrix \(A\) must be non-zero. We calculate the determinant \(D\) of matrix \(A\): \[ D = \begin{vmatrix} 1 + \alpha & \beta & 1 \\ \alpha & 1 + \beta & 1 \\ \alpha & \beta & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula for a \(3 \times 3\) matrix: \[ D = (1 + \alpha) \begin{vmatrix} 1 + \beta & 1 \\ \beta & 2 \end{vmatrix} - \beta \begin{vmatrix} \alpha & 1 \\ \alpha & 2 \end{vmatrix} + 1 \begin{vmatrix} \alpha & 1 + \beta \\ \alpha & \beta \end{vmatrix} \] Calculating the minors: 1. \(\begin{vmatrix} 1 + \beta & 1 \\ \beta & 2 \end{vmatrix} = (1 + \beta) \cdot 2 - \beta \cdot 1 = 2 + 2\beta - \beta = 2 + \beta\) 2. \(\begin{vmatrix} \alpha & 1 \\ \alpha & 2 \end{vmatrix} = \alpha \cdot 2 - \alpha \cdot 1 = 2\alpha - \alpha = \alpha\) 3. \(\begin{vmatrix} \alpha & 1 + \beta \\ \alpha & \beta \end{vmatrix} = \alpha \cdot \beta - \alpha \cdot (1 + \beta) = \alpha\beta - \alpha - \alpha\beta = -\alpha\) Putting it all together: \[ D = (1 + \alpha)(2 + \beta) - \beta \alpha - \alpha \] Expanding this: \[ D = 2 + \beta + 2\alpha + \alpha\beta - \beta\alpha - \alpha = 2 + \beta + \alpha \] ### Step 4: Set the determinant not equal to zero For a unique solution, we need: \[ D \neq 0 \implies 2 + \alpha + \beta \neq 0 \implies \alpha + \beta \neq -2 \] ### Step 5: Check the options Now, we will check each option to see which one satisfies \(\alpha + \beta \neq -2\): 1. **Option (a)**: \((2, 4)\) \(\alpha + \beta = 2 + 4 = 6 \neq -2\) (Valid) 2. **Option (b)**: \((-3, 1)\) \(\alpha + \beta = -3 + 1 = -2\) (Invalid) 3. **Option (c)**: \((-4, 2)\) \(\alpha + \beta = -4 + 2 = -2\) (Invalid) 4. **Option (d)**: \((1, -3)\) \(\alpha + \beta = 1 - 3 = -2\) (Invalid) ### Conclusion The only ordered pair \((\alpha, \beta)\) that results in a unique solution is: **(2, 4)**
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

For what value(s) of alpha will the system of linear equations alphax + 3y = alpha - 3 and 12x + alpha y = alpha has a unique solution?

The value of |alpha| for which the system of equation alphax+y+z=alpha-1 x+alphay+z=alpha-1 x+y+alphaz=alpha-1 has no solutions, is ________.

The value of |alpha| for which the system of equation alphax+y+z=alpha-1 x+alphay+z=alpha-1 x+y+alphaz=alpha-1 has no solution , is "____"

The value of |alpha| for which the system of equation alphax+y+z=alpha-1 x+alphay+z=alpha-1 x+y+alphaz=alpha-1 has no solution , is "____"

If alpha, beta are the roots of the equation x^(2)+alphax + beta = 0 such that alpha ne beta and ||x-beta|-alpha|| lt alpha , then

The system of equations alpha(x-1)+y+z=-1, x+alpha(y-1)+z=-1 and x+y+alpha(z-1)=-1 has no solution, if alpha is equal to

The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1, x+y+alphaz=alpha-1 has no solution if alpha is (A) 1 (B) not -2 (C) either -2 or 1 (D) -2

The system of linear equations x - 2y + z = 4 2x + 3y - 4z = 1 x - 9y + (2a + 3)z = 5a + 1 has infinitely many solution for:

Value of 'alpha' for which system of equations x+y+z=1,x+2y+4z=alpha and x+4y+10 z=alpha^2 is consistent, are

Find the values of alpha and beta for which the following system of linear equations has infinite number of solutions: 2x+3y=7,\ \ \ \ 2alphax+(alpha+beta)y=28

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |