Home
Class 12
MATHS
If A = [(costheta,-sintheta),(sintheta,c...

If `A = [(costheta,-sintheta),(sintheta,costheta)]`, then the matrix `A^(-50)`, when `theta = (pi)/(12)`, is equal to

A

`[(sqrt(3)/(2),(1)/(2)),(-(1)/(2),sqrt(3)/(2))]`

B

`[((1)/(2),sqrt(3)/(2)),(-sqrt(3)/(2),(1)/(2))]`

C

`[((1)/(2),-sqrt(3)/(2)),(sqrt(3)/(2),(1)/(2))]`

D

`[(sqrt(3)/(2),-(1)/(2)),((1)/(2),sqrt(3)/(2))]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A^{-50} \) where \[ A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \] and \( \theta = \frac{\pi}{12} \). ### Step 1: Find \( A^{-1} \) The inverse of the matrix \( A \) can be calculated as follows: \[ A^{-1} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \] ### Step 2: Find \( A^{-50} \) Since \( A^{-1} \) is given, we can find \( A^{-50} \) using the property of matrix exponentiation: \[ A^{-50} = (A^{-1})^{50} \] Using the formula for the powers of rotation matrices, we have: \[ (A^{-1})^n = A^{-n} = \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix} \] Thus, \[ A^{-50} = \begin{pmatrix} \cos(50\theta) & \sin(50\theta) \\ -\sin(50\theta) & \cos(50\theta) \end{pmatrix} \] ### Step 3: Calculate \( 50\theta \) Now we need to calculate \( 50\theta \): \[ 50\theta = 50 \cdot \frac{\pi}{12} = \frac{50\pi}{12} = \frac{25\pi}{6} \] ### Step 4: Find \( \cos(50\theta) \) and \( \sin(50\theta) \) To find \( \cos\left(\frac{25\pi}{6}\right) \) and \( \sin\left(\frac{25\pi}{6}\right) \), we can first reduce \( \frac{25\pi}{6} \) to an equivalent angle within \( [0, 2\pi] \): \[ \frac{25\pi}{6} = 4\pi + \frac{\pi}{6} \quad \text{(since } 4\pi = 24\pi/6\text{)} \] Thus, \[ \frac{25\pi}{6} \equiv \frac{\pi}{6} \quad (\text{mod } 2\pi) \] Now we can find: \[ \cos\left(\frac{25\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2} \] \[ \sin\left(\frac{25\pi}{6}\right) = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \] ### Step 5: Substitute back into \( A^{-50} \) Now substituting these values back into the matrix: \[ A^{-50} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \] ### Final Answer Thus, the matrix \( A^{-50} \) when \( \theta = \frac{\pi}{12} \) is: \[ A^{-50} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If {:A=[(cos theta,sintheta),(-sintheta,costheta)]:}," then A.A' is

if A= [{:(costheta,sintheta),(-sintheta,costheta):}], then A A^T =?

If A=[(costheta,sintheta),(-sintheta,costheta)] , then find the value of |A| .

if A=[(costheta,sintheta),(-sintheta,costheta)],then A^(2)=l is true for

If cos theta-4sintheta=1, the sintheta+4costheta=

Let A=[{:(costheta,sintheta),(-sintheta,costheta):}] , then |2A| is equal to

If A=[[costheta,sintheta],[-sintheta,costheta]],then Lim_(x_>oo)1/nA^n is

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

Prove: (1+costheta-sin^2theta)/(sintheta(1+costheta))= cottheta

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |