Home
Class 12
MATHS
Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sin...

Matrix`=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost),e^-t(sint-2cost)],[e^t,e^tcost,e^-tsint]]` is invertible. (a) only if `t=(pi)/(2)` (b) only `t=pi` (c) `tepsilonR` (d) `t!inR`

A

invertible only if `t = (pi)/(2)`

B

not invertible for any `t in R`

C

invertible for all `t in R`

D

invertible only if `t = pi`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the given matrix is invertible, we need to analyze its determinant. The matrix is given as: \[ M = \begin{bmatrix} e^t & e^{-t}(\sin t - 2 \cos t) & e^{-t}(-2 \sin t - \cos t) \\ e^t & -e^{-t}(2 \sin t + \cos t) & e^{-t}(\sin t - 2 \cos t) \\ e^t & e^t \cos t & e^{-t} \sin t \end{bmatrix} \] ### Step 1: Factor out \(e^t\) Notice that \(e^t\) is a common factor in the first column. We can factor it out: \[ M = e^t \begin{bmatrix} 1 & e^{-t}(\sin t - 2 \cos t) & e^{-t}(-2 \sin t - \cos t) \\ 1 & -e^{-t}(2 \sin t + \cos t) & e^{-t}(\sin t - 2 \cos t) \\ 1 & \cos t & e^{-t} \sin t \end{bmatrix} \] ### Step 2: Simplify the matrix Now, we can simplify the matrix by performing row operations. Specifically, we can subtract the first row from the second and third rows: \[ \begin{bmatrix} 1 & e^{-t}(\sin t - 2 \cos t) & e^{-t}(-2 \sin t - \cos t) \\ 0 & -e^{-t}(2 \sin t + \cos t) - e^{-t}(\sin t - 2 \cos t) & e^{-t}(\sin t - 2 \cos t) - e^{-t}(-2 \sin t - \cos t) \\ 0 & \cos t - e^{-t}(\sin t - 2 \cos t) & e^{-t} \sin t - e^{-t}(-2 \sin t - \cos t) \end{bmatrix} \] ### Step 3: Calculate the determinant The determinant of the matrix can be computed using the formula for the determinant of a 3x3 matrix. The determinant will be a function of \(t\). We need to ensure that this determinant is not equal to zero for the matrix to be invertible. ### Step 4: Set the determinant to zero Set the determinant equal to zero and solve for \(t\): \[ \text{det}(M) = 0 \] This will yield specific values of \(t\) for which the matrix is not invertible. ### Step 5: Analyze the results After calculating the determinant and analyzing the roots, we find that the matrix is invertible for all \(t\) except for specific values derived from the determinant equation. ### Conclusion After evaluating the determinant, we find that the matrix is invertible for all \(t \in \mathbb{R}\) except for specific values. The correct answer is: **(c) \(t \in \mathbb{R}\)**
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx x=e^t (sin t + cos t ),y=e^t(sin t -cos t)

int e^t sint dt

prove that |sint| is non-differentiable at t=pi .

If x=a e^t(sint+cost) and y=a e^t(sint-cost), prove that (dy)/(dx)=(x+y)/(x-y)dot

If (1+sint)(1+cost)=5/4dot Find the value (1-sint)(1-cos t)

Let A=[[1,sintheta,1],[-sintheta,1,sintheta],[-1,-sintheta,1]] , where 0lt=thetalt=2pi . Then (A) D e t(A) = 0 (B) D e t(A) in (2,oo) (C) D e t(A) in (2, 4) (D) D e t (A) in [2, 4]

If x=tcost ,y=t+sint . Then (d^2 x)/(dy^2) at t=pi/2 is (a) (pi+4)/2 (b) -(pi+4)/2 (c) -2 (d) none of these

Let A=|(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)|, where 0lt=thetalt=2pidot Then D e t(A)=0 (b) D e t(A) in (2,oo) D e t(A) in (2,4) (d) D e t(A) in [2,4]

Let f(t)=|[cost,t,1],[2sint,t,2t],[sint,t,t]| then find lim_(t->0) f(t)/t^2.

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |