Home
Class 12
MATHS
Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] I...

Let `A=[[0,2q,r] , [p,q,-r] , [p,-q,r]]` If `A A^T=I_3` then `|p|=`

A

`(1)/(sqrt(2))`

B

`(1)/(sqrt(5))`

C

`(1)/(sqrt(6))`

D

`(1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the absolute value of \( p \) given the matrix \( A \) and the condition \( A A^T = I_3 \). ### Step-by-Step Solution: 1. **Define the Matrix \( A \)**: \[ A = \begin{bmatrix} 0 & 2q & r \\ p & q & -r \\ p & -q & r \end{bmatrix} \] 2. **Compute the Transpose of \( A \)**: \[ A^T = \begin{bmatrix} 0 & p & p \\ 2q & q & -q \\ r & -r & r \end{bmatrix} \] 3. **Multiply \( A \) and \( A^T \)**: We need to calculate \( A A^T \): \[ A A^T = \begin{bmatrix} 0 & 2q & r \\ p & q & -r \\ p & -q & r \end{bmatrix} \begin{bmatrix} 0 & p & p \\ 2q & q & -q \\ r & -r & r \end{bmatrix} \] The resulting matrix will be: \[ A A^T = \begin{bmatrix} (0)(0) + (2q)(2q) + (r)(r) & (0)(p) + (2q)(q) + (r)(-r) & (0)(p) + (2q)(-q) + (r)(r) \\ (p)(0) + (q)(2q) + (-r)(r) & (p)(p) + (q)(q) + (-r)(-r) & (p)(p) + (q)(-q) + (-r)(r) \\ (p)(0) + (-q)(2q) + (r)(r) & (p)(p) + (-q)(q) + (r)(-r) & (p)(p) + (-q)(-q) + (r)(r) \end{bmatrix} \] Simplifying each entry: - First row, first column: \( 4q^2 + r^2 \) - First row, second column: \( 2q^2 - r^2 \) - First row, third column: \( -2q^2 + r^2 \) - Second row, first column: \( 2q^2 - r^2 \) - Second row, second column: \( p^2 + q^2 + r^2 \) - Second row, third column: \( p^2 - q^2 - r^2 \) - Third row, first column: \( -2q^2 + r^2 \) - Third row, second column: \( p^2 - q^2 - r^2 \) - Third row, third column: \( p^2 + q^2 + r^2 \) Therefore, we have: \[ A A^T = \begin{bmatrix} 4q^2 + r^2 & 2q^2 - r^2 & -2q^2 + r^2 \\ 2q^2 - r^2 & p^2 + q^2 + r^2 & p^2 - q^2 - r^2 \\ -2q^2 + r^2 & p^2 - q^2 - r^2 & p^2 + q^2 + r^2 \end{bmatrix} \] 4. **Set \( A A^T \) equal to the Identity Matrix \( I_3 \)**: \[ A A^T = I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] This gives us the following equations: - \( 4q^2 + r^2 = 1 \) (1) - \( 2q^2 - r^2 = 0 \) (2) - \( p^2 + q^2 + r^2 = 1 \) (3) 5. **Solve the equations**: From equation (2): \[ r^2 = 2q^2 \] Substitute \( r^2 \) in equation (1): \[ 4q^2 + 2q^2 = 1 \implies 6q^2 = 1 \implies q^2 = \frac{1}{6} \] Now substitute \( q^2 \) back to find \( r^2 \): \[ r^2 = 2q^2 = 2 \cdot \frac{1}{6} = \frac{1}{3} \] Now substitute \( q^2 \) and \( r^2 \) into equation (3): \[ p^2 + \frac{1}{6} + \frac{1}{3} = 1 \implies p^2 + \frac{1}{6} + \frac{2}{6} = 1 \implies p^2 + \frac{3}{6} = 1 \implies p^2 = 1 - \frac{1}{2} = \frac{1}{2} \] 6. **Find \( |p| \)**: \[ |p| = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] ### Final Answer: \[ |p| = \frac{\sqrt{2}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If |[p,q-y,r-z],[p-x,q,r-z],[p-x,q-y,r]|=0 find the value of p/x+q/y+r/z

If a!=p ,b!=q ,c!=r and |[p, b, c ],[a, q, c ],[a ,b, r]|=0, then find the value of p/(p-a)+q/(q-b)+r/(r-c)dot

Let p,q,repsilonR^(+) and 27pqr>=(p+q+r)^3 and 3p+4q+5r=12 then p^3+q^4+r^5 is equal to

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

Let p , q , r in R^(+) and 27pqr ge (p+q+r)^(3) and 3p+4q+5r=12 . Then the value of 8p+4q-7r=

Let A= {p, q, r} . Which of the following is an equivalence relation on A ? (a) R_1 = {(p, q), (q, r), (p, r), (p, q)} (b) R_2 = {(r,q), (r, p), (r.r), (q, r)} (c) R_3 = {(p, p), (q,q), (r, r), (p, q)} (d) one of these

Let A= [{:p q q p:}] such that det(A)=r where p,q,r all prime number, then trace of A is equal to

. 1/(p+q),1/(q+r),1/(r+p) are in AP, then

Without expanding the determinant prove that: |(0, p-q, p-r), (q-p,0, q-r),(r-p, r-q, 0)|=0

Point P(p ,0),Q(q ,0),R(0, p),S(0,q) from.

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |