Home
Class 12
MATHS
Let A and B be two invertible matrices o...

Let A and B be two invertible matrices of order `3xx3`. If det. `(ABA^(T))` = 8 and det. `(AB^(-1))` = 8, then det. `(BA^(-1)B^(T))` is equal to

A

16

B

`(1)/(16)`

C

`(1)/(4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use properties of determinants and the given information about the matrices A and B. ### Step-by-Step Solution: 1. **Given Information**: - We have two invertible matrices \( A \) and \( B \) of order \( 3 \times 3 \). - \( \det(ABA^T) = 8 \) - \( \det(AB^{-1}) = 8 \) 2. **Using the Determinant Properties**: - We know that \( \det(ABA^T) = \det(A) \det(B) \det(A^T) \). - Since \( \det(A^T) = \det(A) \), we can rewrite this as: \[ \det(ABA^T) = \det(A)^2 \det(B) \] - Therefore, we have: \[ \det(A)^2 \det(B) = 8 \quad \text{(1)} \] 3. **For the Second Determinant**: - We also know that \( \det(AB^{-1}) = \det(A) \det(B^{-1}) \). - Since \( \det(B^{-1}) = \frac{1}{\det(B)} \), we can rewrite this as: \[ \det(AB^{-1}) = \det(A) \cdot \frac{1}{\det(B)} \] - Therefore, we have: \[ \det(A) \cdot \frac{1}{\det(B)} = 8 \quad \text{(2)} \] 4. **Solving the Equations**: - From equation (1): \[ \det(A)^2 \det(B) = 8 \] - From equation (2): \[ \det(A) = 8 \det(B) \] - Substitute \( \det(A) \) from (2) into (1): \[ (8 \det(B))^2 \det(B) = 8 \] \[ 64 \det(B)^2 \det(B) = 8 \] \[ 64 \det(B)^3 = 8 \] \[ \det(B)^3 = \frac{8}{64} = \frac{1}{8} \] \[ \det(B) = \frac{1}{2} \] 5. **Finding \( \det(A) \)**: - Substitute \( \det(B) \) back into equation (2): \[ \det(A) = 8 \cdot \frac{1}{2} = 4 \] 6. **Finding \( \det(BA^{-1}B^T) \)**: - We need to find \( \det(BA^{-1}B^T) \). - Using the properties of determinants: \[ \det(BA^{-1}B^T) = \det(B) \det(A^{-1}) \det(B^T) \] - Since \( \det(B^T) = \det(B) \), we have: \[ \det(BA^{-1}B^T) = \det(B)^2 \det(A^{-1}) \] - We know \( \det(A^{-1}) = \frac{1}{\det(A)} = \frac{1}{4} \): \[ \det(BA^{-1}B^T) = \left(\frac{1}{2}\right)^2 \cdot \frac{1}{4} \] \[ = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16} \] ### Final Answer: \[ \det(BA^{-1}B^T) = \frac{1}{16} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let A and B are two square matrices of order 3 such that det. (A)=3 and det. (B)=2 , then the value of det. (("adj. "(B^(-1) A^(-1)))^(-1)) is equal to _______ .

If A and B are two invertible matrices of the same order, then adj (AB) is equal to

If A and B are two non-singular matrices of order 3 such that A A^(T)=2I and A^(-1)=A^(T)-A . Adj. (2B^(-1)) , then det. (B) is equal to

If A and B are invertible matrices of order 3 |A|=2 and |(AB)^(-1)|=-(1)/(6) find |B|.

Let P, Q and R be invertible matrices of order 3 such A=PQ^(-1), B=QR^(-1) and C=RP^(-1) . Then the value of det. (ABC+BCA+CAB) is equal to _______.

Let A and B are two non - singular matrices of order 3 such that |A|=3 and A^(-1)B^(2)+2AB=O , then the value of |A^(4)-2A^(2)B| is equal to (where O is the null matrix of order 3)

Let A,B and C be square matrices of order 3xx3 with real elements. If A is invertible and (A-B)C=BA^(-1), then

if A and B are two matrices of order 3xx3 so that AB=A and BA=B then (A+B)^7=

If A and B are square matrices of order 3 such that "AA"^(T)=3B and 2AB^(-1)=3A^(-1)B , then the value of (|B|^(2))/(16) is equal to

If A is an invertible matrix of order 2, then det (A^(-1)) is equal to(a) det (A) (B) 1/(det(A) (C) 1 (D) 0

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |