Home
Class 12
MATHS
Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be...

Let `P=[[1,0,0],[4,1,0],[16,4,1]]`and `I` be the identity matrix of order `3`. If `Q = [q_()ij ]` is a matrix, such that `P^(50)-Q=I`, then `(q_(31)+q_(32))/q_(21)` equals

A

52

B

103

C

201

D

205

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((q_{31} + q_{32}) / q_{21}\) given the matrix \(P\) and the equation \(P^{50} - Q = I\), where \(I\) is the identity matrix of order 3. 1. **Define the matrix \(P\)**: \[ P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} \] 2. **Calculate \(P^2\)**: \[ P^2 = P \cdot P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} \] Performing the multiplication: \[ P^2 = \begin{bmatrix} 1 & 0 & 0 \\ 4 + 4 & 1 & 0 \\ 16 + 16 + 4 & 4 + 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 8 & 1 & 0 \\ 36 & 8 & 1 \end{bmatrix} \] 3. **Calculate \(P^3\)**: \[ P^3 = P^2 \cdot P = \begin{bmatrix} 1 & 0 & 0 \\ 8 & 1 & 0 \\ 36 & 8 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} \] Performing the multiplication: \[ P^3 = \begin{bmatrix} 1 & 0 & 0 \\ 8 + 32 & 1 & 0 \\ 36 + 144 + 32 & 8 + 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 40 & 1 & 0 \\ 212 & 12 & 1 \end{bmatrix} \] 4. **Identify the pattern**: From the calculations, we observe that: - The first column remains \([1, 4k, 16k^2]\). - The second column remains \([0, 1, 4]\). - The third column remains \([0, 0, 1]\). Continuing this pattern, we can conjecture that: \[ P^n = \begin{bmatrix} 1 & 0 & 0 \\ 4n & 1 & 0 \\ 16n(n+1)/2 & 4n & 1 \end{bmatrix} \] 5. **Calculate \(P^{50}\)**: Using the pattern: \[ P^{50} = \begin{bmatrix} 1 & 0 & 0 \\ 200 & 1 & 0 \\ 4000 & 200 & 1 \end{bmatrix} \] 6. **Find \(Q\)**: From the equation \(P^{50} - Q = I\): \[ Q = P^{50} - I = \begin{bmatrix} 1 & 0 & 0 \\ 200 & 1 & 0 \\ 4000 & 200 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \] Thus, \[ Q = \begin{bmatrix} 0 & 0 & 0 \\ 200 & 0 & 0 \\ 4000 & 200 & 0 \end{bmatrix} \] 7. **Calculate \((q_{31} + q_{32}) / q_{21}\)**: From the matrix \(Q\): - \(q_{31} = 4000\) - \(q_{32} = 200\) - \(q_{21} = 200\) Therefore: \[ \frac{q_{31} + q_{32}}{q_{21}} = \frac{4000 + 200}{200} = \frac{4200}{200} = 21 \] Thus, the final answer is: \[ \boxed{21} \]
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 1|5 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise chapter -3|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I_3 then |p|=

Suppose P and Q are two different matrices of order 3xx n " and" n xx p , then the order of the matrix P xx Q is ?

Let p=[(3,-1,-2),(2,0,alpha),(3,-5,0)], where alpha in RR. Suppose Q=[q_(ij)] is a matrix such that PQ=kI, where k in RR, k != 0 and I is the identity matrix of order 3. If q_23=-k/8 and det(Q)=k^2/2, then

If P=[(6,-2),(4,-6):}] and Q = [{:(5,3),(2,0):}] find the matrix M such that 2Q - 3P - 3M =0

Let the matrices A=[{:( sqrt3,-2),(0,1):}] and P be any orthogonal matrix such that Q = PAP' and let Rne [r_0] _(2-2)=P'Q^(6) P then

Let O(0,0),P(3,4), and Q(6,0) be the vertices of triangle O P Q . The point R inside the triangle O P Q is such that the triangles O P R ,P Q R ,O Q R are of equal area. The coordinates of R are (4/3,3) (b) (3,2/3) (3,4/3) (d) (4/3,2/3)

Let O(0,0),P(3,4), and Q(6,0) be the vertices of triangle O P Q . The point R inside the triangle O P Q is such that the triangles O P R ,P Q R ,O Q R are of equal area. The coordinates of R are a. (4/3,3) b. (3,2/3) c. (3,4/3) d. (4/3,2/3)

If p != 0, q != 0 and the roots of x^(2) + px +q = 0 are p and q, then (p, q) =

If the line of regression of Y on X is p_(1)x + q_(1)y + r_(1)= 0 and that of X on Y is p_(2)x + q_(2)y + r_(2)= 0 , prove that (p_(1)q_(2))/(p_(2)q_(1)) le 1

CENGAGE ENGLISH-JEE 2019-MCQ
  1. If the system of linear equations x-4y+7z=g, 3y-5z=h, -2x+5y-9z=k is c...

    Text Solution

    |

  2. If the system fo equations x+y+z = 5 x + 2y + 3z = 9 x + 3y + a...

    Text Solution

    |

  3. Let a(1),a(2),a(3), …, a(10) be in G.P. with a(i) gt 0 for i=1, 2, …, ...

    Text Solution

    |

  4. If the system of linear equations 2x+2y+3z=a 3x-y+5z=b x-3y+2z=...

    Text Solution

    |

  5. prove that [ [a-b-c , 2a , 2a ] , [2b , b-c-a , 2b ] ,[2c ,2c,c-a-b]]=...

    Text Solution

    |

  6. An ordered pair (alpha, beta) for which the system of linear equations...

    Text Solution

    |

  7. The set of all values of lambda for which the system of linear equatio...

    Text Solution

    |

  8. If A = [(costheta,-sintheta),(sintheta,costheta)], then the matrix A^(...

    Text Solution

    |

  9. Matrix=[[e^t,e^-t(sint-2cost),e^-t(-2sint-cost)],[e^t,-e^-t(2sint+cost...

    Text Solution

    |

  10. Let d in R and A= ((-2,4+d, sintheta-2),(1, sintheta+2,d),(5, 2sinthet...

    Text Solution

    |

  11. Let A=[(2,b,1),(b,b^(2)+1,b),(1,b,2)] where b gt 0. Then the minimum v...

    Text Solution

    |

  12. Let A=[[0,2q,r] , [p,q,-r] , [p,-q,r]] If A A^T=I3 then |p|=

    Text Solution

    |

  13. Let A and B be two invertible matrices of order 3xx3. If det. (ABA^(T)...

    Text Solution

    |

  14. Let P=[[1,0,0],[4,1,0],[16,4,1]]and I be the identity matrix of order ...

    Text Solution

    |

  15. If A = [(1,sintheta,1),(-sintheta,1,sintheta),(-1,-sintheta,1)], then ...

    Text Solution

    |

  16. Two cards are drawn successively with replacement from a well-shuffled...

    Text Solution

    |

  17. An urn contains 5 red and 2 green balls. A ball is drawn at random fro...

    Text Solution

    |

  18. An unbiased coin is tossed. If the result is a head, a pair of unbi...

    Text Solution

    |

  19. If the probability of hitting a target by a shooter, in any shot is 1/...

    Text Solution

    |

  20. In a random experiment, a fair die is rolled until two fours are obtai...

    Text Solution

    |