Home
Class 12
MATHS
Show that lim(xto0) (e^(1//x)-1)/(e^(1//...

Show that `lim_(xto0) (e^(1//x)-1)/(e^(1//x)+1)` does not exist.

Text Solution

AI Generated Solution

To show that the limit \( \lim_{x \to 0} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1} \) does not exist, we will evaluate the left-hand limit and the right-hand limit as \( x \) approaches 0. ### Step 1: Find the Left-Hand Limit We start by calculating the left-hand limit as \( x \) approaches 0 from the negative side, denoted as \( x \to 0^- \). \[ \lim_{x \to 0^-} \frac{e^{\frac{1}{x}} - 1}{e^{\frac{1}{x}} + 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Show that ("lim")_(xrarr0) (e^(1/x)-1)/(e^(1/x)+1) does not exist

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Evaluate : lim_(xto 0) (e^(sinx)-1)/x

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate : lim_(xto0) (e^(x) -e^(-x))/x

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Show that Lim_(x to 0 ) e^(-1//x) does not exist .