Home
Class 12
MATHS
If f(x)={{:(x","" "xlt0),(1","" "x=0),(x...

If `f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)"` if exists.

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) \) as \( x \) approaches 0, we need to evaluate the left-hand limit and the right-hand limit at that point. The function is defined as follows: \[ f(x) = \begin{cases} x & \text{if } x < 0 \\ 1 & \text{if } x = 0 \\ x^2 & \text{if } x > 0 \end{cases} \] ### Step 1: Evaluate the Left-Hand Limit The left-hand limit as \( x \) approaches 0 is given by: \[ \lim_{x \to 0^-} f(x) \] For \( x < 0 \), the function \( f(x) = x \). Therefore, we can compute: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} x = 0 \] ### Step 2: Evaluate the Right-Hand Limit The right-hand limit as \( x \) approaches 0 is given by: \[ \lim_{x \to 0^+} f(x) \] For \( x > 0 \), the function \( f(x) = x^2 \). Therefore, we can compute: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x^2 = 0 \] ### Step 3: Compare the Left-Hand and Right-Hand Limits Now we compare the two limits we calculated: - Left-hand limit: \( \lim_{x \to 0^-} f(x) = 0 \) - Right-hand limit: \( \lim_{x \to 0^+} f(x) = 0 \) Since both limits are equal, we can conclude that: \[ \lim_{x \to 0} f(x) \text{ exists and is equal to } 0 \] ### Final Result Thus, the limit is: \[ \lim_{x \to 0} f(x) = 0 \] ---

To find the limit of the function \( f(x) \) as \( x \) approaches 0, we need to evaluate the left-hand limit and the right-hand limit at that point. The function is defined as follows: \[ f(x) = \begin{cases} x & \text{if } x < 0 \\ 1 & \text{if } x = 0 \\ x^2 & \text{if } x > 0 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

if f(x) = {{:(x+2",",xle-1),(cx^(2)",",xgt-1):}, then find c when lim(xto-1)f(x) exists.

Let f(x)={{:(cos[x]", "xle0),(|x|+a", "xlt0):}. Then find the value of a, so that lim_(xto0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x.

If f(x)={{:(2x-1,"when "xle0),(x^(2),"when "xgt0):},"then find "f((1)/(2)) and f((-1)/(2))

Letf(x)={{:(x+1,", "if xge0),(x-1,", "if xlt0):}".Then prove that" lim_(xto0) f(x) does not exist.

If f(x)={{:(|x|+1,xlt0),(0,x=0) ,(|x|-1,xgt0):} for what value (s) of a does lim_(xrarra) f(x) exists?

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

If f(x) is defined as follows: f(x)={{:(1,x,gt0),(-1,x,lt0),(0,x,=0):} Then show that lim_(xrarr0) f(x) does not exist.

Let f(x){:{(1+sinx", "xlt0),(x^(2)-x+1ge0):} Then