Home
Class 12
MATHS
If f(x)={{:(sinx","" "xnenpi", "ninI),...

If `f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):}` and
`g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):}` then find `lim_(xto0) g{f(x)}`.

Text Solution

Verified by Experts

The correct Answer is:
1

`underset(xto0^(+))limg{f(x)}=g(f(0^(+)))=g((sin0^(+)))=g(0^(+))=(0)^(2)+1=1`
`underset(xto0^(-))limg{f(x)}=g(f(0^(-)))=g((sin0^(-)))=g(0^(-))=(0)^(2)+1=1`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.3|15 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Solved Examples|15 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

If f(x)={(sinx, x != npi " and " n in I_2), (2, " x=npi):} and g(x)={(x^2+1, x != 0),(4,x=0), (5, x=2):} then lim_(x->0) g{f(x)} is

Let f(x)={{:(x^(n)sin(1//x^(2))","xne0),(0", "x=0):},(ninI). Then

Let f(x)={{:(x+1", "xlgt0),(2-x", "xle0):}"and"g(x)={{:(x+3", "xlt1),(x^(2)-2x-2", "1lexlt2),(x-5", "xge2):} Find the LHL and RHL of g(f(x)) at x=0 and, hence, find lim_(xto0) g(f(x)).

Evaluate lim_(xto0)|x|^(sinx)

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

f(x) ={{:((x)/(2x^(2)+|x|),xne0),( 1, x=0):} then f(x) is

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.