Home
Class 12
MATHS
Evauate lim(xto1) (x^(4)-3x^(4)+2)/(x^(3...

Evauate `lim_(xto1) (x^(4)-3x^(4)+2)/(x^(3)-5x^(2)+3x+1).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 1} \frac{x^4 - 3x^2 + 2}{x^3 - 5x^2 + 3x + 1}, \] we will follow these steps: ### Step 1: Factor the Numerator The numerator is \(x^4 - 3x^2 + 2\). We can substitute \(t = x^2\), so the expression becomes: \[ t^2 - 3t + 2. \] Next, we factor this quadratic: \[ t^2 - 3t + 2 = (t - 1)(t - 2). \] Substituting back \(t = x^2\), we have: \[ (x^2 - 1)(x^2 - 2). \] Now, we can factor \(x^2 - 1\) further: \[ x^2 - 1 = (x - 1)(x + 1). \] Thus, the numerator can be expressed as: \[ (x - 1)(x + 1)(x^2 - 2). \] ### Step 2: Factor the Denominator Now, we need to factor the denominator \(x^3 - 5x^2 + 3x + 1\). We can use the Rational Root Theorem to find a root. Testing \(x = 1\): \[ 1^3 - 5(1^2) + 3(1) + 1 = 1 - 5 + 3 + 1 = 0. \] Thus, \(x = 1\) is a root. We can perform synthetic division of \(x^3 - 5x^2 + 3x + 1\) by \(x - 1\): 1 | 1 -5 3 1 | 1 -4 -1 ------------------- | 1 -4 -1 0 The quotient is \(x^2 - 4x - 1\). Therefore, we can write the denominator as: \[ (x - 1)(x^2 - 4x - 1). \] ### Step 3: Cancel Common Factors Now we can rewrite the limit: \[ \lim_{x \to 1} \frac{(x - 1)(x + 1)(x^2 - 2)}{(x - 1)(x^2 - 4x - 1)}. \] Since both the numerator and denominator have a common factor of \(x - 1\), we can cancel it out (as long as \(x \neq 1\)): \[ \lim_{x \to 1} \frac{(x + 1)(x^2 - 2)}{x^2 - 4x - 1}. \] ### Step 4: Substitute \(x = 1\) Now we substitute \(x = 1\): Numerator: \[ (1 + 1)(1^2 - 2) = 2(1 - 2) = 2(-1) = -2. \] Denominator: \[ 1^2 - 4(1) - 1 = 1 - 4 - 1 = -4. \] Thus, the limit becomes: \[ \frac{-2}{-4} = \frac{1}{2}. \] ### Final Answer The limit is: \[ \lim_{x \to 1} \frac{x^4 - 3x^2 + 2}{x^3 - 5x^2 + 3x + 1} = \frac{1}{2}. \]

To evaluate the limit \[ \lim_{x \to 1} \frac{x^4 - 3x^2 + 2}{x^3 - 5x^2 + 3x + 1}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

Evaluate the following limits : Lim_(x to 1) (x^(4) - 3x^(3) +2)/(x^(3)-5x^(2)+3x+1)

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

lim_(x->1)(x^4-3x^2+2)/(x^3-5x^2+3x+1)

find lim_(x->1) ((x^4-3x^2+2)/(x^3-5x^2+3x+1))

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

Evaluate lim_(xto1) (x^(4)-sqrt(x))/(sqrt(x)-1) .