Home
Class 12
MATHS
Evaluate lim(xto pi//4) (1-cot^(3)x)/(2-...

Evaluate `lim_(xto pi//4) (1-cot^(3)x)/(2-cotx-cot^(3)x).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \cot^3 x}{2 - \cot x - \cot^3 x}, \] we can follow these steps: ### Step 1: Rewrite the expression We can rewrite the numerator \(1 - \cot^3 x\) using the difference of cubes formula: \[ 1 - \cot^3 x = (1 - \cot x)(1 + \cot x + \cot^2 x). \] ### Step 2: Rewrite the denominator Next, we can rewrite the denominator \(2 - \cot x - \cot^3 x\). We can express \(2\) as \(1 + 1\): \[ 2 - \cot x - \cot^3 x = (1 - \cot^3 x) + (1 - \cot x). \] ### Step 3: Substitute the rewritten forms Now substituting the rewritten forms into the limit gives us: \[ \lim_{x \to \frac{\pi}{4}} \frac{(1 - \cot x)(1 + \cot x + \cot^2 x)}{(1 - \cot^3 x) + (1 - \cot x)}. \] ### Step 4: Factor out common terms Notice that \(1 - \cot^3 x\) can be factored as \( (1 - \cot x)(1 + \cot x + \cot^2 x) \). Thus, we can simplify: \[ \lim_{x \to \frac{\pi}{4}} \frac{(1 - \cot x)(1 + \cot x + \cot^2 x)}{(1 - \cot x)(1 + \cot x + \cot^2 x) + (1 - \cot x)}. \] ### Step 5: Cancel out common factors Since \(1 - \cot x\) is a common factor in both the numerator and the denominator, we can cancel it out (as long as \(x \neq \frac{\pi}{4}\)): \[ \lim_{x \to \frac{\pi}{4}} \frac{1 + \cot x + \cot^2 x}{1 + \cot x + \cot^2 x + 1}. \] ### Step 6: Substitute \(x = \frac{\pi}{4}\) Now we can substitute \(x = \frac{\pi}{4}\): \[ \cot\left(\frac{\pi}{4}\right) = 1. \] So we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 + 1 + 1^2}{1 + 1 + 1^2 + 1} = \frac{3}{4}. \] ### Final Answer Thus, the limit evaluates to: \[ \frac{3}{4}. \]

To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \cot^3 x}{2 - \cot x - \cot^3 x}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ("lim")_(xvecpi/4)(1-cot^3x)/(2-cotx-cot^3x)

Evaluate, lim_(xto(pi//6)) (cot^(2)x-3)/("cosec"x-2)

Evaluate, lim_(xto(pi//4)) (sinx-cosx)/(x-pi/4)

Evaluate lim_(xto(pi)/(4)) (1-sin2x)/(1+cos4x).

Evaluate lim_(x to 0) (x^(3) cot x)/(1 - cos x)

Evaluate: ("lim")_(xto pi/4)(sqrt(2)cosx-1)/(cotx-1)

Evaluate: (lim)_(x->pi/2)(cot x)/(pi/2-x)

Evaluate lim_(xto0) (cot2x-cosec2x)/(x).

Evaluate lim_(xto7//2) (2x^(2)-9x+8)^(cot(2x-7)).

Evaluate lim_(xto0){tan((pi)/4+x)}^(1/x)