Home
Class 12
MATHS
Evaluate lim(xto0) (sqrt(2)-sqrt(1+cosx)...

Evaluate `lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \), we will follow these steps: ### Step 1: Rationalize the Numerator We start by rationalizing the numerator. We multiply the numerator and the denominator by the conjugate of the numerator, which is \( \sqrt{2} + \sqrt{1 + \cos x} \): \[ \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \cdot \frac{\sqrt{2} + \sqrt{1 + \cos x}}{\sqrt{2} + \sqrt{1 + \cos x}} = \lim_{x \to 0} \frac{(\sqrt{2})^2 - (\sqrt{1 + \cos x})^2}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})} \] ### Step 2: Simplify the Numerator The numerator simplifies to: \[ 2 - (1 + \cos x) = 2 - 1 - \cos x = 1 - \cos x \] Thus, we can rewrite our limit as: \[ \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})} \] ### Step 3: Use the Identity for \(1 - \cos x\) We can use the trigonometric identity \( 1 - \cos x = 2 \sin^2 \left(\frac{x}{2}\right) \): \[ \lim_{x \to 0} \frac{2 \sin^2 \left(\frac{x}{2}\right)}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})} \] ### Step 4: Rewrite \(\sin^2 x\) Using the identity \( \sin x = 2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) \), we have: \[ \sin^2 x = 4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right) \] Substituting this into our limit gives: \[ \lim_{x \to 0} \frac{2 \sin^2 \left(\frac{x}{2}\right)}{4 \sin^2 \left(\frac{x}{2}\right) \cos^2 \left(\frac{x}{2}\right) (\sqrt{2} + \sqrt{1 + \cos x})} \] ### Step 5: Cancel \(\sin^2 \left(\frac{x}{2}\right)\) We can cancel \( \sin^2 \left(\frac{x}{2}\right) \) from the numerator and the denominator: \[ \lim_{x \to 0} \frac{2}{4 \cos^2 \left(\frac{x}{2}\right) (\sqrt{2} + \sqrt{1 + \cos x})} \] ### Step 6: Evaluate the Limit As \( x \to 0 \), \( \cos \left(\frac{x}{2}\right) \to 1 \) and \( \sqrt{1 + \cos x} \to \sqrt{2} \): \[ \lim_{x \to 0} \frac{2}{4 \cdot 1^2 \cdot (\sqrt{2} + \sqrt{2})} = \frac{2}{4 \cdot 2\sqrt{2}} = \frac{2}{8\sqrt{2}} = \frac{1}{4\sqrt{2}} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} = \frac{1}{4\sqrt{2}} \]

To evaluate the limit \( \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \), we will follow these steps: ### Step 1: Rationalize the Numerator We start by rationalizing the numerator. We multiply the numerator and the denominator by the conjugate of the numerator, which is \( \sqrt{2} + \sqrt{1 + \cos x} \): \[ \lim_{x \to 0} \frac{\sqrt{2} - \sqrt{1 + \cos x}}{\sin^2 x} \cdot \frac{\sqrt{2} + \sqrt{1 + \cos x}}{\sqrt{2} + \sqrt{1 + \cos x}} = \lim_{x \to 0} \frac{(\sqrt{2})^2 - (\sqrt{1 + \cos x})^2}{\sin^2 x (\sqrt{2} + \sqrt{1 + \cos x})} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate the limit: ("lim")_(xvec0)(sqrt(2)-sqrt(1+cosx))/(sin^2x)

Evaluate lim_(xto0)(1+tan^(2)sqrt(x))^(1/(2x))

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto1) ((2x-3)(sqrt(x)-1))/(2x^(2)+x-3).

Evaluate lim_(xto0) (sinx-sina)/(sqrt(x)-sqrt(a))

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) (cosx)^(cotx).

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).