Home
Class 12
MATHS
Evaluate lim(xtosqrt(10)) (sqrt(7+2x)-(s...

Evaluate `lim_(xtosqrt(10)) (sqrt(7+2x)-(sqrt(5)+sqrt(2)))/(x^(2)-10).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - (\sqrt{5} + \sqrt{2})}{x^2 - 10}, \] we will follow these steps: ### Step 1: Substitute \(x = \sqrt{10}\) First, we substitute \(x = \sqrt{10}\) into the expression: \[ \sqrt{7 + 2\sqrt{10}} - (\sqrt{5} + \sqrt{2}) \quad \text{and} \quad (\sqrt{10})^2 - 10. \] Calculating the denominator: \[ (\sqrt{10})^2 - 10 = 10 - 10 = 0. \] Now calculating the numerator: \[ \sqrt{7 + 2\sqrt{10}} - (\sqrt{5} + \sqrt{2}). \] We need to check if the numerator also approaches zero: \[ \sqrt{7 + 2\sqrt{10}} = \sqrt{5} + \sqrt{2}. \] Thus, substituting \(x = \sqrt{10}\) gives us the form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the derivative of the denominator. #### Derivative of the Numerator: Let \( f(x) = \sqrt{7 + 2x} - (\sqrt{5} + \sqrt{2}) \). The derivative \( f'(x) \) is: \[ f'(x) = \frac{1}{2\sqrt{7 + 2x}} \cdot 2 = \frac{1}{\sqrt{7 + 2x}}. \] #### Derivative of the Denominator: Let \( g(x) = x^2 - 10 \). The derivative \( g'(x) \) is: \[ g'(x) = 2x. \] ### Step 3: Rewrite the Limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to \sqrt{10}} \frac{f'(x)}{g'(x)} = \lim_{x \to \sqrt{10}} \frac{\frac{1}{\sqrt{7 + 2x}}}{2x}. \] ### Step 4: Substitute \(x = \sqrt{10}\) Again Now we substitute \(x = \sqrt{10}\) into the new limit expression: \[ = \frac{1}{\sqrt{7 + 2\sqrt{10}} \cdot 2\sqrt{10}}. \] Calculating \( \sqrt{7 + 2\sqrt{10}} \): \[ \sqrt{7 + 2\sqrt{10}} = \sqrt{5} + \sqrt{2}. \] Thus, we have: \[ = \frac{1}{(\sqrt{5} + \sqrt{2}) \cdot 2\sqrt{10}}. \] ### Step 5: Final Result The final result of the limit is: \[ \lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - (\sqrt{5} + \sqrt{2})}{x^2 - 10} = \frac{1}{(\sqrt{5} + \sqrt{2}) \cdot 2\sqrt{10}}. \]

To evaluate the limit \[ \lim_{x \to \sqrt{10}} \frac{\sqrt{7 + 2x} - (\sqrt{5} + \sqrt{2})}{x^2 - 10}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->sqrt10)(sqrt(7+2x)-(sqrt(5)+sqrt(2)))/(x^2-10) is equal to

Evaluate lim_(xtooo) sqrt(x)(sqrt(x+c)-sqrt(x)).

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

Evaluate ("lim")_(xrarr0)(sqrt(2+x)-sqrt(2))/x

Evaluate: lim_(xrarra) (sqrt(x)-sqrt(a))/(x-a)

Evaluate, lim_(xtosqrt(2)) (x^(4)-4)/(x^(2)+3sqrt(2)x-8) .

lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)

Evaluate lim_(x to a) (sqrt(x) + sqrt(a))/(x + a)

Evaluate : lim_(x to 4 ) (sqrt(x)-2)/(x-4)