Home
Class 12
MATHS
Evaluate lim(ntooo) ((1^(2)-2^(2)+3^(2)-...

Evaluate `lim_(ntooo) ((1^(2)-2^(2)+3^(2)-4^(2)+5^(2)+...n" terms"))/(n^(2)).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{(1^2 - 2^2 + 3^2 - 4^2 + 5^2 + \ldots + (-1)^{n+1} n^2)}{n^2}, \] we can start by rewriting the expression in the numerator. The series alternates between positive and negative squares of integers. ### Step 1: Group the terms in pairs We can group the terms in pairs: \[ (1^2 - 2^2) + (3^2 - 4^2) + (5^2 - 6^2) + \ldots \] Each pair can be simplified as follows: \[ k^2 - (k+1)^2 = k^2 - (k^2 + 2k + 1) = -2k - 1. \] ### Step 2: Determine the number of pairs If \( n \) is even, we have \( n/2 \) pairs. If \( n \) is odd, we have \( (n-1)/2 \) pairs plus the last term \( n^2 \). However, for large \( n \), the last term \( n^2 \) will not significantly affect the limit. ### Step 3: Calculate the sum of pairs For \( n \) even, the sum becomes: \[ \sum_{k=1}^{n/2} (-2(2k-1) - 1) = -2\sum_{k=1}^{n/2} (2k-1) - \frac{n}{2}. \] The sum of the first \( m \) odd numbers is \( m^2 \). Thus: \[ \sum_{k=1}^{n/2} (2k-1) = \left(\frac{n}{2}\right)^2 = \frac{n^2}{4}. \] So, we have: \[ -2 \cdot \frac{n^2}{4} - \frac{n}{2} = -\frac{n^2}{2} - \frac{n}{2}. \] ### Step 4: Write the limit expression Now, substituting back into the limit expression, we have: \[ \lim_{n \to \infty} \frac{-\frac{n^2}{2} - \frac{n}{2}}{n^2}. \] ### Step 5: Simplify the limit This can be simplified to: \[ \lim_{n \to \infty} \left(-\frac{1}{2} - \frac{1}{2n}\right). \] As \( n \to \infty \), the term \( \frac{1}{2n} \) approaches 0. Therefore, we get: \[ -\frac{1}{2} - 0 = -\frac{1}{2}. \] ### Final Result Thus, the limit evaluates to: \[ \boxed{-\frac{1}{2}}. \]

To evaluate the limit \[ \lim_{n \to \infty} \frac{(1^2 - 2^2 + 3^2 - 4^2 + 5^2 + \ldots + (-1)^{n+1} n^2)}{n^2}, \] we can start by rewriting the expression in the numerator. The series alternates between positive and negative squares of integers. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(ntooo)(pin)^(2//n)

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

Evaluate lim _( x to oo) ((1^(2) )/(n ^(3) +1 ^(3))+(2 ^(2))/(n ^(3) +2 ^(3)) + (3 ^(2))/(n ^(3)+ 3 ^(3))+ .... + (4)/(9n)).

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

Evaluate lim_(ntooo) n^(-n^(2))[(n+2^(0))(n+2^(-1))(n+2^(-2))...(n+2^(-n+1))]^(n) .

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

Evaluate lim_(ntooo) nsin(2pisqrt(1+n^(2))),(n inN).

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to