Home
Class 12
MATHS
Evaluate lim(x to oo ) [sqrt(a^(2)x^(2)+...

Evaluate `lim_(x to oo ) [sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)].`

Text Solution

Verified by Experts

The correct Answer is:
`1//2`

`underset(xtooo)lim[sqrt(a^(2)x^(2)+ax+1)-sqrt(a^(2)x^(2)+1)]`
`underset(xtooo)lim(ax)/(sqrt(a^(2)x^(2)+ax+1)+sqrt(a^(2)x^(2)+1))" "`(Rationalizing)
`=underset(xtooo)lim(a)/(sqrt(a^(2)+(a)/(x)+(1)/(x^(2)))+sqrt(a^(2)+(1)/x^(2)))`
(Dividing numerator and denominator by x)
`=(a)/(2a)=1/2`
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

lim_(x to oo ) (sqrt(3x^(2)-1)-sqrt(2x^(2)-3))/(4x+3)

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1))

Evaluate lim_(x to 0) ((sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2)))

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))

lim_(x rarr oo)(sqrt(x^(2)+x)-x)