Home
Class 12
MATHS
If [x] denotes the greatest integer less...

If `[x]` denotes the greatest integer less than or equal to x, then evaluate `lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{n \to \infty} \frac{1}{n^2} \left( [1 \cdot x] + [2 \cdot x] + [3 \cdot x] + \ldots + [n \cdot x] \right), \] where \([x]\) denotes the greatest integer less than or equal to \(x\), we can follow these steps: ### Step 1: Rewrite the Sum We can express the sum in terms of a summation: \[ \sum_{r=1}^{n} [r \cdot x]. \] Using the property of the greatest integer function, we have: \[ [r \cdot x] = r \cdot x - \{r \cdot x\}, \] where \(\{r \cdot x\}\) is the fractional part of \(r \cdot x\). Thus, we can rewrite the sum as: \[ \sum_{r=1}^{n} [r \cdot x] = \sum_{r=1}^{n} (r \cdot x - \{r \cdot x\}) = \sum_{r=1}^{n} r \cdot x - \sum_{r=1}^{n} \{r \cdot x\}. \] ### Step 2: Substitute into the Limit Now substituting this back into the limit gives us: \[ \lim_{n \to \infty} \frac{1}{n^2} \left( \sum_{r=1}^{n} r \cdot x - \sum_{r=1}^{n} \{r \cdot x\} \right). \] ### Step 3: Evaluate Each Sum The first sum can be simplified using the formula for the sum of the first \(n\) natural numbers: \[ \sum_{r=1}^{n} r = \frac{n(n+1)}{2}. \] Thus, \[ \sum_{r=1}^{n} r \cdot x = x \cdot \frac{n(n+1)}{2}. \] Now substituting this back into the limit: \[ \lim_{n \to \infty} \frac{1}{n^2} \left( x \cdot \frac{n(n+1)}{2} - \sum_{r=1}^{n} \{r \cdot x\} \right). \] ### Step 4: Analyze the Fractional Part Sum The sum \(\sum_{r=1}^{n} \{r \cdot x\}\) consists of fractional parts, which are bounded between \(0\) and \(1\). Therefore, as \(n\) approaches infinity, this sum grows linearly with \(n\), but is significantly smaller than \(n^2\): \[ \sum_{r=1}^{n} \{r \cdot x\} \leq n. \] ### Step 5: Simplify the Limit Now we can simplify the limit: \[ \lim_{n \to \infty} \left( \frac{x \cdot \frac{n(n+1)}{2}}{n^2} - \frac{\sum_{r=1}^{n} \{r \cdot x\}}{n^2} \right). \] The first term simplifies to: \[ \frac{x(n^2 + n)}{2n^2} = \frac{x}{2} + \frac{x}{2n}. \] As \(n\) approaches infinity, the second term \(\frac{\sum_{r=1}^{n} \{r \cdot x\}}{n^2}\) tends to \(0\). ### Final Result Thus, we find: \[ \lim_{n \to \infty} \left( \frac{x}{2} + \frac{x}{2n} - 0 \right) = \frac{x}{2}. \] Therefore, the final answer is: \[ \boxed{\frac{x}{2}}. \]

To evaluate the limit \[ \lim_{n \to \infty} \frac{1}{n^2} \left( [1 \cdot x] + [2 \cdot x] + [3 \cdot x] + \ldots + [n \cdot x] \right), \] where \([x]\) denotes the greatest integer less than or equal to \(x\), we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(3))([1^(1)x]+[2^(2)x]+[3^(2)x]+...+[n^(2)x]).

If [x] denotes the greatest integer less than or equal to x , then evaluate ("lim")_(nvecoo)1/(n^3){[1^2x]+[2^2x]+[3^2x]+}[n^2x]}

If [x] denotes the greatest integer less than or equal to x, then ["log"_(10) 6730.4]=

If [x] denotes the greatest integer less than or equal to x,then the value of lim_(x->1)(1-x+[x-1]+[1-x]) is

If [x] denotes the greatest integer less then or equal to x, then [ (6sqrt(6) + 14)^(2n +1)]

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

If [x] denotes the greatest integer less than or equal to*, then [(1 + 0.0001)^10000] equals

If [x] denotes the greatest integer less than or equal to x, then the solutions of the equation 2x-2[x]=1 are

If [x] denotes the greatest integer less than or equal to x, then the solution set of inequation ([x]-2)/(4-[x]) > 0, is ...

If [x] denotes the greatest integer less than or equal to x , then find the value of the integral int_0^2x^2[x]dxdot