Home
Class 12
MATHS
Evaluate lim(x to 1) (sum(k=1)^(100) x^...

Evaluate `lim_(x to 1) (sum_(k=1)^(100) x^(k) - 100)/(x-1).`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 1} \frac{\sum_{k=1}^{100} x^k - 100}{x - 1}, \] we can follow these steps: ### Step 1: Expand the summation The summation \(\sum_{k=1}^{100} x^k\) can be expressed as: \[ x + x^2 + x^3 + \ldots + x^{100}. \] This is a geometric series with the first term \(a = x\) and common ratio \(r = x\). The formula for the sum of the first \(n\) terms of a geometric series is: \[ S_n = a \frac{1 - r^n}{1 - r}. \] In our case, \(n = 100\), so we have: \[ \sum_{k=1}^{100} x^k = x \frac{1 - x^{100}}{1 - x}. \] ### Step 2: Substitute the summation into the limit Now we substitute this back into the limit expression: \[ \lim_{x \to 1} \frac{x \frac{1 - x^{100}}{1 - x} - 100}{x - 1}. \] ### Step 3: Simplify the expression We can rewrite the expression in the limit: \[ \lim_{x \to 1} \frac{x(1 - x^{100}) - 100(1 - x)}{(1 - x)(x - 1)}. \] This simplifies to: \[ \lim_{x \to 1} \frac{x - x^{101} - 100 + 100x}{(1 - x)(x - 1)} = \lim_{x \to 1} \frac{101x - x^{101} - 100}{(1 - x)(x - 1)}. \] ### Step 4: Evaluate the limit using L'Hôpital's Rule As \(x\) approaches 1, both the numerator and denominator approach 0, so we can apply L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{d}{dx}(101x - x^{101} - 100) \Big/ \frac{d}{dx}((1 - x)(x - 1)). \] Calculating the derivatives: 1. The derivative of the numerator \(101x - x^{101} - 100\) is \(101 - 101x^{100}\). 2. The derivative of the denominator \((1 - x)(x - 1)\) is \(-2(x - 1)\). Thus, we have: \[ \lim_{x \to 1} \frac{101 - 101x^{100}}{-2(x - 1)}. \] ### Step 5: Substitute \(x = 1\) Now substituting \(x = 1\): \[ \frac{101 - 101 \cdot 1^{100}}{-2(1 - 1)} = \frac{101 - 101}{0} = \text{indeterminate form}. \] We need to apply L'Hôpital's Rule again: Taking the derivative again gives: 1. The derivative of the numerator \(101 - 101x^{100}\) is \(-10100x^{99}\). 2. The derivative of the denominator \(-2(x - 1)\) is \(-2\). Now we have: \[ \lim_{x \to 1} \frac{-10100x^{99}}{-2} = \frac{10100}{2} = 5050. \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 1} \frac{\sum_{k=1}^{100} x^k - 100}{x - 1} = 5050. \] ---

To evaluate the limit \[ \lim_{x \to 1} \frac{\sum_{k=1}^{100} x^k - 100}{x - 1}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limit: ("lim")_(x vec 1)(sum _(k=1) ^100 x^k-100)/(x-1)

Evaluate : lim_(x to -1) x/([x])

Evaluate lim_(x to 1) (x^(3) - 1)/(x - 1)

Evaluate : lim_(x to 1) (x^(m)-1)/(x^(n)-1)

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

Evaluate ("lim")_(nvecoo)sum_(k=1)^nk/(n^2+k^2)

Evaluate: lim_(x->0)(e-(1+x)^(1/x))/x

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

Evaluate : sum_(k=1)^n (2^k+3^(k-1))