Home
Class 12
MATHS
Evaluate lim(hto0) [(1)/(h^(3)sqrt(8+h))...

Evaluate `lim_(hto0) [(1)/(h^(3)sqrt(8+h))-(1)/(2h)].`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{h \to 0} \left( \frac{1}{h^3 \sqrt{8+h}} - \frac{1}{2h} \right), \] we will follow these steps: ### Step 1: Combine the fractions First, we will find a common denominator for the two fractions. The common denominator is \(2h^3 \sqrt{8+h}\). \[ \frac{1}{h^3 \sqrt{8+h}} - \frac{1}{2h} = \frac{2 - h^2 \sqrt{8+h}}{2h^3 \sqrt{8+h}}. \] ### Step 2: Factor out \(h\) Now we can factor out \(h\) from the numerator: \[ \frac{2 - h^2 \sqrt{8+h}}{2h^3 \sqrt{8+h}} = \frac{-h^2 \sqrt{8+h} + 2}{2h^3 \sqrt{8+h}}. \] ### Step 3: Rewrite the limit We can rewrite the limit as: \[ \lim_{h \to 0} \frac{-h^2 \sqrt{8+h} + 2}{2h^3 \sqrt{8+h}}. \] ### Step 4: Simplify the limit As \(h \to 0\), \(\sqrt{8+h} \to \sqrt{8} = 2\sqrt{2}\). Thus, we can substitute this into our limit: \[ \lim_{h \to 0} \frac{-h^2 (2\sqrt{2}) + 2}{2h^3 (2\sqrt{2})}. \] ### Step 5: Evaluate the limit Now we can evaluate the limit: \[ \lim_{h \to 0} \frac{-2\sqrt{2}h^2 + 2}{4\sqrt{2}h^3} = \lim_{h \to 0} \frac{2(1 - \sqrt{2}h^2)}{4\sqrt{2}h^3}. \] As \(h\) approaches 0, the term \(-\sqrt{2}h^2\) approaches 0, so we have: \[ \lim_{h \to 0} \frac{2}{4\sqrt{2}h^3} = \lim_{h \to 0} \frac{1}{2\sqrt{2}h^3}. \] This limit diverges to \(-\infty\) as \(h\) approaches 0. ### Final Answer Thus, the limit is: \[ \lim_{h \to 0} \left( \frac{1}{h^3 \sqrt{8+h}} - \frac{1}{2h} \right) = -\infty. \]

To evaluate the limit \[ \lim_{h \to 0} \left( \frac{1}{h^3 \sqrt{8+h}} - \frac{1}{2h} \right), \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.4|5 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.5|12 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.2|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(hto0)(sqrt(x+h)-sqrt(x))/(h)

Evaluate lim_(xto0) (cosx)^(cotx).

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate lim_(hto0)(log_(10)(1+h))/h

Evaluate lim_(x to 0) ("sin"ax)/(x)