Home
Class 12
MATHS
Evaluate lim(xto pi//2) tanxlogsinx...

Evaluate `lim_(xto pi//2) tanxlogsinx`

A

-2

B

-1

C

`-(2)/(7)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \frac{\pi}{2}} \tan x \log(\sin x) \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form. We know that: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we can express the limit as: \[ \lim_{x \to \frac{\pi}{2}} \tan x \log(\sin x) = \lim_{x \to \frac{\pi}{2}} \frac{\log(\sin x)}{\cot x} \] where \( \cot x = \frac{\cos x}{\sin x} \). ### Step 2: Analyze the limit As \( x \to \frac{\pi}{2} \): - \( \sin x \to 1 \) and thus \( \log(\sin x) \to \log(1) = 0 \). - \( \cot x \to 0 \) because \( \cos x \to 0 \) and \( \sin x \to 1 \). This gives us the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit exists. Here, let: - \( f(x) = \log(\sin x) \) - \( g(x) = \cot x \) We differentiate both the numerator and the denominator. ### Step 4: Differentiate the numerator and denominator The derivative of \( f(x) = \log(\sin x) \) is: \[ f'(x) = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x \] The derivative of \( g(x) = \cot x \) is: \[ g'(x) = -\csc^2 x \] ### Step 5: Substitute back into the limit Now we substitute back into the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cot x}{-\csc^2 x} = \lim_{x \to \frac{\pi}{2}} \frac{\cot x \cdot \sin^2 x}{-1} \] Since \( \cot x = \frac{\cos x}{\sin x} \), we have: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cos x \cdot \sin^2 x}{-1} \] ### Step 6: Evaluate the limit As \( x \to \frac{\pi}{2} \): - \( \cos x \to 0 \) - \( \sin^2 x \to 1 \) Thus, the limit evaluates to: \[ \lim_{x \to \frac{\pi}{2}} \frac{0 \cdot 1}{-1} = 0 \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to \frac{\pi}{2}} \tan x \log(\sin x) = 0 \] ---

To evaluate the limit \( \lim_{x \to \frac{\pi}{2}} \tan x \log(\sin x) \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form. We know that: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, we can express the limit as: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto pi//2) (sinx-(sinx)^(sinx))/(1-sinx+log_(e)sinx) .

Evaluate, lim_(xto(pi//4)) (sinx-cosx)/(x-pi/4)

Evaluate lim_(xto pi//4) (2-tanx)^(1//1n(tanx))

Evaluate lim_(xto (pi^(-))/(2)) (cosx)^(cosx).

Evaluate lim_(xto pi/2)(1-"sin"x)^2/((pi/2-x)^(2))

Evaluate, lim_(xto(pi//6)) (sqrt(3)sinx-cosx)/(x-pi/6)

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate lim_(xto(pi)/(2)) (1+cos2x)/((pi-2x)^(2)).

Evaluate lim_(xto(pi/3)) sqrt(1-cos6x)/(sqrt(2)(pi/3-x)