Home
Class 12
MATHS
Evaluate lim(x to 0) (2^(x)-1)/((1+x)^...

Evaluate `lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)`

A

`(1)/(8sqrt(3))`

B

`(1)/(4sqrt(3))`

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1}, \] we start by substituting \(x = 0\): \[ \frac{2^0 - 1}{\sqrt{1+0} - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0}. \] Since this is an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that if we have an indeterminate form, we can take the derivative of the numerator and the derivative of the denominator. ### Step 1: Differentiate the numerator and denominator **Numerator:** The numerator is \(2^x - 1\). The derivative is: \[ \frac{d}{dx}(2^x - 1) = 2^x \ln(2). \] **Denominator:** The denominator is \(\sqrt{1+x} - 1\). The derivative is: \[ \frac{d}{dx}(\sqrt{1+x} - 1) = \frac{1}{2\sqrt{1+x}}. \] ### Step 2: Apply L'Hôpital's Rule Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{2^x \ln(2)}{\frac{1}{2\sqrt{1+x}}} = \lim_{x \to 0} \frac{2^x \ln(2) \cdot 2\sqrt{1+x}}{1}. \] ### Step 3: Substitute \(x = 0\) again Now, substituting \(x = 0\): \[ = 2^0 \ln(2) \cdot 2\sqrt{1+0} = 1 \cdot \ln(2) \cdot 2 \cdot 1 = 2 \ln(2). \] ### Step 4: Final result Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1} = 2 \ln(2). \]

To evaluate the limit \[ \lim_{x \to 0} \frac{2^x - 1}{\sqrt{1+x} - 1}, \] we start by substituting \(x = 0\): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ((1+x)^(6)-1)/((1+x)^(2)-1) .

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xtooo)(1+2/x)^(x)

Use the formula Lim_(xto 0) (a^(x)-1)/x = log_(e)a " to find " Lim_(xto0) (2^(x)-1)/((1+x)^(1//2)-1)

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

Evaluate: ("lim")(xto0)(2^x-1)/((1+x)^(1/2)-1)

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate Lim_(xto0) ((1+x)^(6)-1)/((1+x)^(2)-1)

lim_(x to 0) (cos 2x-1)/(cos x-1)