Home
Class 12
MATHS
Evaluatelim(xto pi//4) (2-tanx)^(1//1n(t...

Evaluate`lim_(xto pi//4) (2-tanx)^(1//1n(tanx))`

A

16

B

8

C

4

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} (2 - \tan x)^{\frac{1}{\ln(\tan x)}} \] we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{4} \) First, we substitute \( x = \frac{\pi}{4} \) into the expression: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Thus, we have: \[ 2 - \tan\left(\frac{\pi}{4}\right) = 2 - 1 = 1 \] And since \( \ln(\tan\left(\frac{\pi}{4}\right)) = \ln(1) = 0 \), we find that the expression becomes: \[ 1^{\frac{1}{0}} \quad \text{(which is an indeterminate form of type } 1^{\infty}\text{)} \] ### Step 2: Rewrite the expression Since we have an indeterminate form \( 1^{\infty} \), we can use the property that if \( f(x) \to 1 \) and \( g(x) \to \infty \), then: \[ \lim_{x \to a} f(x)^{g(x)} = e^{\lim_{x \to a} g(x)(f(x) - 1)} \] Here, we can let: - \( f(x) = 2 - \tan x \) - \( g(x) = \frac{1}{\ln(\tan x)} \) Thus, we need to compute: \[ \lim_{x \to \frac{\pi}{4}} \frac{1}{\ln(\tan x)} \cdot (2 - \tan x - 1) = \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{\ln(\tan x)} \] ### Step 3: Simplify the limit Now we rewrite the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{\ln(\tan x)} \] As \( x \to \frac{\pi}{4} \), both the numerator \( 1 - \tan x \) and the denominator \( \ln(\tan x) \) approach 0, giving us another indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule: ### Step 4: Apply L'Hôpital's Rule Differentiating the numerator and denominator: - The derivative of \( 1 - \tan x \) is \( -\sec^2 x \) - The derivative of \( \ln(\tan x) \) is \( \frac{\sec^2 x}{\tan x} \) Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{-\sec^2 x}{\frac{\sec^2 x}{\tan x}} = \lim_{x \to \frac{\pi}{4}} -\tan x \] ### Step 5: Evaluate the limit Now substituting \( x = \frac{\pi}{4} \): \[ -\tan\left(\frac{\pi}{4}\right) = -1 \] ### Step 6: Final expression Now we can substitute back into our earlier expression: \[ \lim_{x \to \frac{\pi}{4}} (2 - \tan x)^{\frac{1}{\ln(\tan x)}} = e^{-1} \] Thus, the final answer is: \[ \boxed{\frac{1}{e}} \]

To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} (2 - \tan x)^{\frac{1}{\ln(\tan x)}} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto pi//2) tanxlogsinx

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))

Evaluate lim_(xto pi//4) (1-cot^(3)x)/(2-cotx-cot^(3)x).

Evaluate lim_(xto 0^(+))(sinx)^(tanx)

Evaluate lim_(xto0) (a^(tanx)-a^(sinx))/(tanx-sinx),agt0

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

Evaluate : lim_(x to 0 ) (3^(x) -2^(x))/(tanx)

Evaluate lim_(xto(pi)/(4)) (1-sin2x)/(1+cos4x).

Evaluate, lim_(xto(pi//4)) (sinx-cosx)/(x-pi/4)