Home
Class 12
MATHS
Evaluatelim(xto0^(+)) x^(x)"and "lim(xto...

Evaluate`lim_(xto0^(+)) x^(x)"and "lim_(xto0^(+))x^(x^(x))`

A

`1//2`

B

2

C

1

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limits \( \lim_{x \to 0^+} x^x \) and \( \lim_{x \to 0^+} x^{x^x} \), we will proceed step by step. ### Step 1: Evaluate \( \lim_{x \to 0^+} x^x \) 1. **Set \( y = x^x \)**: We start by letting \( y = x^x \). 2. **Take the logarithm**: To simplify the expression, we take the natural logarithm of both sides: \[ \log y = \log(x^x) = x \log x \] 3. **Rewrite the limit**: We need to evaluate the limit as \( x \) approaches \( 0^+ \): \[ \lim_{x \to 0^+} \log y = \lim_{x \to 0^+} x \log x \] 4. **Change the form**: Notice that \( x \log x \) approaches the form \( 0 \cdot (-\infty) \). We can rewrite it as: \[ \lim_{x \to 0^+} x \log x = \lim_{x \to 0^+} \frac{\log x}{1/x} \] 5. **Apply L'Hôpital's Rule**: This is now in the form \( \frac{-\infty}{\infty} \), so we can apply L'Hôpital's Rule: \[ \lim_{x \to 0^+} \frac{\log x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} -x = 0 \] 6. **Conclude for \( y \)**: Since \( \lim_{x \to 0^+} \log y = 0 \), we have: \[ \log y \to 0 \implies y \to e^0 = 1 \] Thus, \[ \lim_{x \to 0^+} x^x = 1 \] ### Step 2: Evaluate \( \lim_{x \to 0^+} x^{x^x} \) 1. **Use the result from Step 1**: We know that \( \lim_{x \to 0^+} x^x = 1 \). 2. **Set up the limit**: Now we evaluate: \[ \lim_{x \to 0^+} x^{x^x} = \lim_{x \to 0^+} x^{1} = \lim_{x \to 0^+} x = 0 \] ### Final Answers: - \( \lim_{x \to 0^+} x^x = 1 \) - \( \lim_{x \to 0^+} x^{x^x} = 0 \)

To evaluate the limits \( \lim_{x \to 0^+} x^x \) and \( \lim_{x \to 0^+} x^{x^x} \), we will proceed step by step. ### Step 1: Evaluate \( \lim_{x \to 0^+} x^x \) 1. **Set \( y = x^x \)**: We start by letting \( y = x^x \). 2. **Take the logarithm**: To simplify the expression, we take the natural logarithm of both sides: \[ \log y = \log(x^x) = x \log x ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|76 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.7|7 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)|x|^(sinx)

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto0)x^(3)"cos"2/x .

Evaluate lim_(xto0) (logcosx)/(x)

Evaluate lim_(xto0)(cosecx)^(x) .

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate lim_(xto0^(-)) (x^(2)-3x+2)/(x^(3)-2x^(2)).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate : lim_(xto0) (a^(x)-b^(x))/x

Evaluate lim_(xto0^(+)) (x)^((1)/(log_(e)sinx)).