Home
Class 12
MATHS
Let lim(xto0) ([x]^(2))/(x^(2))=m, where...

Let `lim_(xto0) ([x]^(2))/(x^(2))=m,` where `[.]` denotes greatest integer. Then, m equals to a. `-(1)/(sqrt(2))` b. `(1)/(sqrt(2))` c. `sqrt(2)` d. Limit doesn't exist

A

`-(1)/(sqrt(2))`

B

`(1)/(sqrt(2))`

C

`sqrt(2)`

D

`-sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{[x]^2}{x^2} = m \), where \([x]\) denotes the greatest integer function, we will analyze the behavior of the function as \( x \) approaches 0 from both the right and the left. ### Step 1: Analyze the Right-Hand Limit (RHL) When \( x \) approaches 0 from the right (i.e., \( x \to 0^+ \)): - For \( 0 < x < 1 \), the greatest integer function \([x]\) is 0. - Therefore, we have: \[ [x]^2 = 0^2 = 0 \] - Substituting this into the limit gives: \[ \lim_{x \to 0^+} \frac{[x]^2}{x^2} = \lim_{x \to 0^+} \frac{0}{x^2} = 0 \] ### Step 2: Analyze the Left-Hand Limit (LHL) Now, consider \( x \) approaching 0 from the left (i.e., \( x \to 0^- \)): - For \( -1 < x < 0 \), the greatest integer function \([x]\) is -1. - Therefore, we have: \[ [x]^2 = (-1)^2 = 1 \] - Substituting this into the limit gives: \[ \lim_{x \to 0^-} \frac{[x]^2}{x^2} = \lim_{x \to 0^-} \frac{1}{x^2} \] - As \( x \) approaches 0 from the left, \( x^2 \) approaches 0, which means: \[ \frac{1}{x^2} \to +\infty \] ### Step 3: Conclusion Since the right-hand limit (RHL) is 0 and the left-hand limit (LHL) approaches \( +\infty \), we conclude that: \[ \lim_{x \to 0} \frac{[x]^2}{x^2} \text{ does not exist.} \] Thus, the value of \( m \) is: \[ \text{Option D: Limit doesn't exist.} \]

To solve the limit \( \lim_{x \to 0} \frac{[x]^2}{x^2} = m \), where \([x]\) denotes the greatest integer function, we will analyze the behavior of the function as \( x \) approaches 0 from both the right and the left. ### Step 1: Analyze the Right-Hand Limit (RHL) When \( x \) approaches 0 from the right (i.e., \( x \to 0^+ \)): - For \( 0 < x < 1 \), the greatest integer function \([x]\) is 0. - Therefore, we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

int_0^oo[3/(x^2+1)]dx, where [.] denotes the greatest integer function, is equal to (A) sqrt2 (B) sqrt2+1 (C) 3/sqrt2 (D) infinite

The value of lim_(xto 0)[(sinx.tanx)/(x^(2))] is …….. (where [.] denotes greatest integer function).

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest i...

    Text Solution

    |

  2. Let lim(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer....

    Text Solution

    |

  3. lim(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greate...

    Text Solution

    |

  4. The value of the limit lim(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt...

    Text Solution

    |

  5. If lim(xtoa) {(f(x))/(g(x))} exists, then which one of the following c...

    Text Solution

    |

  6. lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part...

    Text Solution

    |

  7. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then lim(ntooo) x(n)is

    Text Solution

    |

  8. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  9. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  10. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  11. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  12. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  13. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  14. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  15. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  16. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  17. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  18. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  19. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  20. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |