Home
Class 12
MATHS
lim(xto1) [cosec(pix)/(2)]^(1//(1-x)) (w...

`lim_(xto1) [cosec(pix)/(2)]^(1//(1-x))` (where `[.]` represents the greatest integer function) is equal to

A

(i) exists, (ii) does not exist

B

(i) does not exist, (ii) exists

C

both (i) and (ii) exist

D

neither (i) nor (ii) exists

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} \left[ \frac{\csc(\pi x)}{2} \right]^{\frac{1}{1-x}} \), where \([.]\) represents the greatest integer function, we can follow these steps: ### Step 1: Analyze the limit as \( x \to 1 \) As \( x \) approaches 1, we need to evaluate \( \csc(\pi x) \): \[ \csc(\pi x) = \frac{1}{\sin(\pi x)} \] When \( x = 1 \), \( \sin(\pi x) = \sin(\pi) = 0 \). Therefore, \( \csc(\pi x) \) approaches infinity as \( x \) approaches 1. ### Step 2: Substitute the limit into the expression Now, we substitute this into our limit: \[ \lim_{x \to 1} \left[ \frac{\csc(\pi x)}{2} \right]^{\frac{1}{1-x}} = \lim_{x \to 1} \left[ \frac{1}{2 \sin(\pi x)} \right]^{\frac{1}{1-x}} \] ### Step 3: Determine the behavior of \( \sin(\pi x) \) As \( x \to 1 \), \( \sin(\pi x) \) approaches 0. Therefore, \( \frac{1}{\sin(\pi x)} \) approaches infinity, which means \( \frac{\csc(\pi x)}{2} \) also approaches infinity. ### Step 4: Evaluate the limit of the exponent Now, we need to analyze the exponent \( \frac{1}{1-x} \): - As \( x \to 1 \), \( 1-x \) approaches 0, thus \( \frac{1}{1-x} \) approaches \( +\infty \). ### Step 5: Combine the results Now we have an expression of the form \( \infty^{\infty} \): \[ \lim_{x \to 1} \left[ \frac{\csc(\pi x)}{2} \right]^{\frac{1}{1-x}} = \infty^{\infty} \] ### Step 6: Apply the greatest integer function Since \( \left[ \frac{\csc(\pi x)}{2} \right] \) approaches \( \infty \) as \( x \to 1 \), we can conclude that: \[ \left[ \frac{\csc(\pi x)}{2} \right] \to \infty \] ### Step 7: Final limit evaluation Thus, the limit becomes: \[ \lim_{x \to 1} \left[ \frac{\csc(\pi x)}{2} \right]^{\frac{1}{1-x}} = \infty^{\infty} = 1 \] ### Conclusion The final result is: \[ \lim_{x \to 1} \left[ \frac{\csc(\pi x)}{2} \right]^{\frac{1}{1-x}} = 1 \]

To solve the limit \( \lim_{x \to 1} \left[ \frac{\csc(\pi x)}{2} \right]^{\frac{1}{1-x}} \), where \([.]\) represents the greatest integer function, we can follow these steps: ### Step 1: Analyze the limit as \( x \to 1 \) As \( x \) approaches 1, we need to evaluate \( \csc(\pi x) \): \[ \csc(\pi x) = \frac{1}{\sin(\pi x)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

lim_(xto0) [(1-e^(x))(sinx)/(|x|)] is (where [.] represents the greatest integer function )

Find lim_(xto0) [x]((e^(1//x)-1)/(e^(1//x)+1)), (where [.] represents the greatest integer funciton).

The value of lim_(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] represents the greatest integral function) is

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

Evaluate lim_(xto2^(+)) ([x-2])/(log(x-2)), where [.] represents the greatest integer function.

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest i...

    Text Solution

    |

  2. Let lim(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer....

    Text Solution

    |

  3. lim(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greate...

    Text Solution

    |

  4. The value of the limit lim(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt...

    Text Solution

    |

  5. If lim(xtoa) {(f(x))/(g(x))} exists, then which one of the following c...

    Text Solution

    |

  6. lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part...

    Text Solution

    |

  7. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then lim(ntooo) x(n)is

    Text Solution

    |

  8. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  9. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  10. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  11. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  12. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  13. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  14. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  15. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  16. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  17. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  18. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  19. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  20. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |