Home
Class 12
MATHS
The value of the limit lim(xto0) (a^(sqr...

The value of the limit `lim_(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt(x))+a^(1//sqrt(x))),agt1,`is

A

does not exist

B

`1//3`

C

0

D

`2//9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{a^{\sqrt{x}} - a^{\frac{1}{\sqrt{x}}}}{a^{\sqrt{x}} + a^{\frac{1}{\sqrt{x}}}} \] where \( a > 1 \), we will follow these steps: ### Step 1: Analyze the limit as \( x \to 0 \) As \( x \to 0 \): - \( \sqrt{x} \to 0 \) - \( \frac{1}{\sqrt{x}} \to \infty \) Thus, we can evaluate the terms: - \( a^{\sqrt{x}} \to a^0 = 1 \) - \( a^{\frac{1}{\sqrt{x}}} \to a^{\infty} = \infty \) ### Step 2: Substitute the limits into the expression Substituting these values into the limit gives us: \[ \frac{1 - \infty}{1 + \infty} = \frac{-\infty}{\infty} \] This is an indeterminate form of type \( \frac{-\infty}{\infty} \). ### Step 3: Simplify the expression To resolve the indeterminate form, we can factor out the dominant term \( a^{\frac{1}{\sqrt{x}}} \) from both the numerator and the denominator: \[ \frac{a^{\frac{1}{\sqrt{x}}} \left( a^{\sqrt{x} - \frac{1}{\sqrt{x}}} - 1 \right)}{a^{\frac{1}{\sqrt{x}}} \left( a^{\sqrt{x}} + 1 \right)} \] This simplifies to: \[ \frac{a^{\sqrt{x} - \frac{1}{\sqrt{x}}} - 1}{1 + a^{-\frac{1}{\sqrt{x}}}} \] ### Step 4: Evaluate the limit of the simplified expression As \( x \to 0 \): - \( \sqrt{x} - \frac{1}{\sqrt{x}} \to 0 - \infty = -\infty \) - Thus, \( a^{\sqrt{x} - \frac{1}{\sqrt{x}}} \to a^{-\infty} = 0 \) So the numerator becomes: \[ 0 - 1 = -1 \] For the denominator, as \( x \to 0 \): \[ 1 + a^{-\frac{1}{\sqrt{x}}} \to 1 + 0 = 1 \] ### Step 5: Final limit evaluation Thus, we have: \[ \lim_{x \to 0} \frac{-1}{1} = -1 \] ### Conclusion The value of the limit is: \[ \boxed{-1} \]

To solve the limit \[ \lim_{x \to 0} \frac{a^{\sqrt{x}} - a^{\frac{1}{\sqrt{x}}}}{a^{\sqrt{x}} + a^{\frac{1}{\sqrt{x}}}} \] where \( a > 1 \), we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of the limit ("lim")_(xvec0)(a^(sqrt(x))-a^(1sqrt(x)))/(a^(sqrt(x))+a^(1sqrt(x))),a >1,i s (a) 4 (b) 2 (c) -1 (d) 0

Evaluate lim_(xto0)(1+tan^(2)sqrt(x))^(1/(2x))

Find limit lim (x->0) (sqrt(1+x)-1)/x

lim_(x to 0) (x)/(sqrt(1+x-1))

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

Evaluate lim_(xto1) (x^(4)-sqrt(x))/(sqrt(x)-1) .

Evaluate the following limits : Lim_(x to 1) (x^(2)-sqrt(x))/(sqrt(x)-1)

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. Let lim(xto0) ([x]^(2))/(x^(2))=m, where [.] denotes greatest integer....

    Text Solution

    |

  2. lim(xto1) [cosec(pix)/(2)]^(1//(1-x)) (where [.] represents the greate...

    Text Solution

    |

  3. The value of the limit lim(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt...

    Text Solution

    |

  4. If lim(xtoa) {(f(x))/(g(x))} exists, then which one of the following c...

    Text Solution

    |

  5. lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part...

    Text Solution

    |

  6. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then lim(ntooo) x(n)is

    Text Solution

    |

  7. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  8. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  9. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  10. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  11. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  12. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  13. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  14. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  15. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  16. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  17. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  18. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  19. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  20. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |