Home
Class 12
MATHS
lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {...

`lim_(xto-1) (1)/(sqrt(|x|-{-x}))` (where `{x}` denotes the fractional part of x) is equal to

A

16

B

24

C

32

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to -1} \frac{1}{\sqrt{|x| - \{x\}}} \), where \(\{x\}\) denotes the fractional part of \(x\), we will analyze the left-hand limit and the right-hand limit separately. ### Step 1: Understanding the fractional part function The fractional part function \(\{x\}\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] For negative values of \(x\), \(\{x\} = x - (-n) = x + n\), where \(n\) is the integer part of \(x\). ### Step 2: Finding the left-hand limit We will first find the left-hand limit as \(x\) approaches \(-1\) from the left (\(x \to -1^-\)): \[ \lim_{x \to -1^-} \frac{1}{\sqrt{|x| - \{x\}}} \] 1. **Calculate \(|x|\)**: As \(x\) approaches \(-1\) from the left, \(|x| = -x\). 2. **Calculate \(\{x\}\)**: For \(x \to -1^-\), \(\{x\} = x + 1\). Thus, we have: \[ |x| - \{x\} = -x - (x + 1) = -x - x - 1 = -2x - 1 \] ### Step 3: Substitute into the limit Now we substitute this back into the limit: \[ \lim_{x \to -1^-} \frac{1}{\sqrt{-2x - 1}} \] ### Step 4: Evaluate the expression inside the limit As \(x\) approaches \(-1\) from the left: \[ -2x - 1 \to -2(-1) - 1 = 2 - 1 = 1 \] Thus, we have: \[ \sqrt{-2x - 1} \to \sqrt{1} = 1 \] ### Step 5: Calculate the left-hand limit Now we can evaluate the left-hand limit: \[ \lim_{x \to -1^-} \frac{1}{\sqrt{-2x - 1}} = \frac{1}{1} = 1 \] ### Step 6: Finding the right-hand limit Next, we will find the right-hand limit as \(x\) approaches \(-1\) from the right (\(x \to -1^+\)): \[ \lim_{x \to -1^+} \frac{1}{\sqrt{|x| - \{x\}}} \] 1. **Calculate \(|x|\)**: As \(x\) approaches \(-1\) from the right, \(|x| = -x\). 2. **Calculate \(\{x\}\)**: For \(x \to -1^+\), \(\{x\} = x + 1\). Thus, we have: \[ |x| - \{x\} = -x - (x + 1) = -x - x - 1 = -2x - 1 \] ### Step 7: Substitute into the limit Now we substitute this back into the limit: \[ \lim_{x \to -1^+} \frac{1}{\sqrt{-2x - 1}} \] ### Step 8: Evaluate the expression inside the limit As \(x\) approaches \(-1\) from the right: \[ -2x - 1 \to -2(-1) - 1 = 2 - 1 = 1 \] Thus, we have: \[ \sqrt{-2x - 1} \to \sqrt{1} = 1 \] ### Step 9: Calculate the right-hand limit Now we can evaluate the right-hand limit: \[ \lim_{x \to -1^+} \frac{1}{\sqrt{-2x - 1}} = \frac{1}{1} = 1 \] ### Conclusion Since both the left-hand limit and the right-hand limit are equal: \[ \lim_{x \to -1^-} \frac{1}{\sqrt{|x| - \{x\}}} = 1 \quad \text{and} \quad \lim_{x \to -1^+} \frac{1}{\sqrt{|x| - \{x\}}} = 1 \] The overall limit exists and is equal to: \[ \lim_{x \to -1} \frac{1}{\sqrt{|x| - \{x\}}} = 1 \]

To solve the limit \( \lim_{x \to -1} \frac{1}{\sqrt{|x| - \{x\}}} \), where \(\{x\}\) denotes the fractional part of \(x\), we will analyze the left-hand limit and the right-hand limit separately. ### Step 1: Understanding the fractional part function The fractional part function \(\{x\}\) is defined as: \[ \{x\} = x - \lfloor x \rfloor \] For negative values of \(x\), \(\{x\} = x - (-n) = x + n\), where \(n\) is the integer part of \(x\). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->-1)1/(sqrt(|x|-{-x}))(w h e r e{x} denotes the fractional part of (x) ) is equal to (a)does not exist (b) 1 (c) oo (d) 1/2

lim_(x to 0) {(1+x)^((2)/(x))} (where {.} denotes the fractional part of x) is equal to

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

lim_(x->1) (x-1){x}. where {.) denotes the fractional part, is equal to:

if f(x) ={x^(2)} , where {x} denotes the fractional part of x , then

lim_(x->oo ){(e^x+pi^x)^(1/x)}= where {.} denotes the fractional part of x is equal to

lim_(xrarroo) {(e^(x)+pi^(x))^((1)/(x))} = (where {.} denotes the fractional part of x ) is equal to

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. L= lim_(xto0-) f(x) is equal to

let f(x)=(cos^-1(1-{x})sin^-1(1-{x}))/sqrt(2{x}(1-{x})) where {x} denotes the fractional part of x then

Let f(x)=(sin^(-1)(1-{x})xxcos^(-1)(1-{x}))/(sqrt(2{x})xx(1-{x})) , where {x} denotes the fractional part of x. R=lim_(xto0+) f(x) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of the limit lim(xto0) (a^(sqrt(x))-a^(1//sqrt(x)))/(a^(sqrt...

    Text Solution

    |

  2. If lim(xtoa) {(f(x))/(g(x))} exists, then which one of the following c...

    Text Solution

    |

  3. lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part...

    Text Solution

    |

  4. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then lim(ntooo) x(n)is

    Text Solution

    |

  5. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  6. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  7. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  8. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  9. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  10. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  11. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  12. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  13. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  14. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  15. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  16. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  17. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  18. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  19. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  20. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |