Home
Class 12
MATHS
If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge...

If `x_(1)=3` and `x_(n+1)=sqrt(2+x_(n))" ",nge1,` then `lim_(ntooo) x_(n)`is

A

0

B

`(1)/(2)`

C

log2

D

`e^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given recurrence relation and initial condition: 1. **Given Information**: - \( x_1 = 3 \) - \( x_{n+1} = \sqrt{2 + x_n} \) for \( n \geq 1 \) 2. **Finding the Limit**: - We want to find \( \lim_{n \to \infty} x_n \). Let's denote this limit as \( L \). - As \( n \) approaches infinity, both \( x_n \) and \( x_{n+1} \) approach the same limit \( L \). Therefore, we can write: \[ L = \sqrt{2 + L} \] 3. **Squaring Both Sides**: - To eliminate the square root, we square both sides of the equation: \[ L^2 = 2 + L \] 4. **Rearranging the Equation**: - Rearranging the equation gives us a standard quadratic equation: \[ L^2 - L - 2 = 0 \] 5. **Factoring the Quadratic**: - We can factor this quadratic equation: \[ (L - 2)(L + 1) = 0 \] 6. **Finding the Roots**: - Setting each factor to zero gives us the possible solutions: \[ L - 2 = 0 \quad \Rightarrow \quad L = 2 \] \[ L + 1 = 0 \quad \Rightarrow \quad L = -1 \] 7. **Determining the Valid Limit**: - Since \( L \) represents the limit of the sequence \( x_n \) and the terms of the sequence are generated from square roots (which are non-negative), we discard \( L = -1 \) as it is not a valid solution. - Thus, we conclude: \[ L = 2 \] 8. **Final Result**: - Therefore, the limit is: \[ \lim_{n \to \infty} x_n = 2 \]

To solve the problem step by step, we start with the given recurrence relation and initial condition: 1. **Given Information**: - \( x_1 = 3 \) - \( x_{n+1} = \sqrt{2 + x_n} \) for \( n \geq 1 \) 2. **Finding the Limit**: - We want to find \( \lim_{n \to \infty} x_n \). Let's denote this limit as \( L \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If x_(1)=2 and x_(n+1)=sqrt(x_(n)^(2)+8) , then x_(4)=

If x_1=3 and x_(n+1)=sqrt(2+x_n),ngeq1,t h e n""("lim")_(xrarroo)x_n is (a) -1 (b) 2 (c) sqrt(5) (d) 3

If x_0=1 and x_(n+1)=3sqrt(2x_(n)), then x_3 =

If x_(0) = 3 and x_(n+1) = x_(n) sqrt(x_n + 1) , then x_(3) =

If a_(1)=1 and a_(n)+1=(4+3a_(n))/(3+2a_(n)),nge1"and if" lim_(ntooo) a_(n)=a,"then find the value of a."

If x_1=sqrt(3) and x_(n+1)=(x_n)/(1+sqrt(1+x_ n^2)),AA n in N then lim_(n->oo)2^n x_n is equal to

Let A={:[(1,x/n),(-x/n,1)]:},"then "lim_(ntooo) A^(n) is:

If sum_(r=1)^(n) a_(r)=(1)/(6)n(n+1)(n+2) for all nge1 , then lim_(ntooo) sum_(r=1)^(n) (1)/(a_(r)) , is

If a_(1)=1 and a_(n+1)=(4+3a_(n))/(3+2a_(n)),nge1 , show that a_(n+2)gea_(n+1) and if a lim l as n to oo the evaluate lim_(ntooo)a_(n)

For n epsilon N let x_(n) be defined as (1+1/n)^((n+x_(n)))=e then lim_(nto oo)(2x_(n)) equals…..

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. If lim(xtoa) {(f(x))/(g(x))} exists, then which one of the following c...

    Text Solution

    |

  2. lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part...

    Text Solution

    |

  3. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then lim(ntooo) x(n)is

    Text Solution

    |

  4. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  5. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  6. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  7. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  8. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  9. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  10. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  11. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  12. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  13. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  14. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  15. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  16. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  17. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  18. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  19. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  20. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |