Home
Class 12
MATHS
lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n...

`lim_(xto0^(-)) (sum_(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x),` where `ninN` and `[.]` denotes the greatest integer function, equals

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0^-} \frac{\sum_{r=1}^{2n+1} [x^r] + (n+1)}{1 + [x] + |x| + 2x}, \] where \( n \in \mathbb{N} \) and \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Analyze the numerator The numerator consists of the sum of the greatest integer function applied to \( x^r \) for \( r \) from 1 to \( 2n + 1 \), plus \( n + 1 \). As \( x \to 0^- \) (approaching 0 from the left), \( x \) is negative and very close to 0. - For \( r = 1 \), \([x^1] = [x] = -1\) (since \( x \) is negative). - For \( r = 2 \), \([x^2] = [x^2] = 0\) (since \( x^2 \) is positive and less than 1). - For odd \( r \) (like \( r = 3, 5, \ldots, 2n + 1 \)), \([x^r] = -1\). - For even \( r \) (like \( r = 2, 4, \ldots, 2n\)), \([x^r] = 0\). Thus, we can summarize the contributions: - The odd powers contribute \(-1\) for \( n+1 \) odd terms. - The even powers contribute \(0\) for \( n \) even terms. The total contribution from the odd powers (which are \( n + 1 \) terms) is: \[ -n \quad \text{(since there are \( n \) odd terms)} \] Adding \( n + 1 \) gives: \[ -n + (n + 1) = 1. \] ### Step 2: Analyze the denominator The denominator is: \[ 1 + [x] + |x| + 2x. \] As \( x \to 0^- \): - \([x] = -1\), - \(|x| = -x\), - \(2x\) is also negative. Thus, substituting these values: \[ 1 - 1 - x + 2x = 1 + x. \] ### Step 3: Combine the results Now substituting back into the limit: \[ \lim_{x \to 0^-} \frac{1}{1 + x}. \] As \( x \to 0^- \), \( 1 + x \to 1 \). ### Final Result Thus, the limit evaluates to: \[ \frac{1}{1} = 1. \] So, the final answer is: \[ \lim_{x \to 0^-} \frac{\sum_{r=1}^{2n+1} [x^r] + (n+1)}{1 + [x] + |x| + 2x} = 1. \] ---

To solve the limit \[ \lim_{x \to 0^-} \frac{\sum_{r=1}^{2n+1} [x^r] + (n+1)}{1 + [x] + |x| + 2x}, \] where \( n \in \mathbb{N} \) and \([.]\) denotes the greatest integer function, we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

lim_(xrarr oo) (logx^n-[x])/([x]) where n in N and [.] denotes the greatest integer function, is

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

f(x) = lim_(n->oo) sin^(2n)(pix)+[x+1/2] , where [.] denotes the greatest integer function, is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto-1) (1)/(sqrt(|x|-{-x})) (where {x} denotes the fractional part...

    Text Solution

    |

  2. If x(1)=3 and x(n+1)=sqrt(2+x(n))" ",nge1, then lim(ntooo) x(n)is

    Text Solution

    |

  3. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  4. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  5. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  6. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  7. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  8. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  9. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  10. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  11. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  12. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  13. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  14. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  15. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  16. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  17. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  18. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  19. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  20. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |