Home
Class 12
MATHS
If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and...

If `f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)," then "lim_(xto3) [f(x)+g(x)+h(x)]" is "`

A

1

B

`oo`

C

`sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we will evaluate the limit as \( x \) approaches 3 for the expression \( f(x) + g(x) + h(x) \). ### Step 1: Define the functions We have the following functions: - \( f(x) = \frac{2}{x - 3} \) - \( g(x) = \frac{x - 3}{x + 4} \) - \( h(x) = -\frac{2(2x + 1)}{x^2 + x - 12} \) ### Step 2: Substitute the functions into the limit We need to find: \[ \lim_{x \to 3} \left( f(x) + g(x) + h(x) \right) \] This becomes: \[ \lim_{x \to 3} \left( \frac{2}{x - 3} + \frac{x - 3}{x + 4} - \frac{2(2x + 1)}{x^2 + x - 12} \right) \] ### Step 3: Factor the denominator of \( h(x) \) The denominator of \( h(x) \) can be factored: \[ x^2 + x - 12 = (x - 3)(x + 4) \] Thus, we can rewrite \( h(x) \): \[ h(x) = -\frac{2(2x + 1)}{(x - 3)(x + 4)} \] ### Step 4: Combine the functions over a common denominator The common denominator for \( f(x) \), \( g(x) \), and \( h(x) \) is \( (x - 3)(x + 4) \). We rewrite the limit: \[ \lim_{x \to 3} \left( \frac{2(x + 4)}{(x - 3)(x + 4)} + \frac{(x - 3)(x - 3)}{(x - 3)(x + 4)} - \frac{2(2x + 1)}{(x - 3)(x + 4)} \right) \] ### Step 5: Combine the numerators Combining the numerators gives: \[ \lim_{x \to 3} \frac{2(x + 4) + (x - 3)^2 - 2(2x + 1)}{(x - 3)(x + 4)} \] ### Step 6: Expand the numerator Expanding the numerator: - \( 2(x + 4) = 2x + 8 \) - \( (x - 3)^2 = x^2 - 6x + 9 \) - \( -2(2x + 1) = -4x - 2 \) Combining these: \[ 2x + 8 + x^2 - 6x + 9 - 4x - 2 = x^2 - 8x + 15 \] ### Step 7: Factor the numerator Now we have: \[ \lim_{x \to 3} \frac{x^2 - 8x + 15}{(x - 3)(x + 4)} \] Factoring \( x^2 - 8x + 15 \): \[ x^2 - 8x + 15 = (x - 3)(x - 5) \] ### Step 8: Simplify the expression Thus, we can simplify: \[ \lim_{x \to 3} \frac{(x - 3)(x - 5)}{(x - 3)(x + 4)} \] Cancelling \( (x - 3) \): \[ \lim_{x \to 3} \frac{x - 5}{x + 4} \] ### Step 9: Evaluate the limit Now we can substitute \( x = 3 \): \[ \frac{3 - 5}{3 + 4} = \frac{-2}{7} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 3} \left( f(x) + g(x) + h(x) \right) = -\frac{2}{7} \]

To solve the limit problem step by step, we will evaluate the limit as \( x \) approaches 3 for the expression \( f(x) + g(x) + h(x) \). ### Step 1: Define the functions We have the following functions: - \( f(x) = \frac{2}{x - 3} \) - \( g(x) = \frac{x - 3}{x + 4} \) - \( h(x) = -\frac{2(2x + 1)}{x^2 + x - 12} \) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2/(x-3),g(x)=(x-3)/(x+4) , and h(x)=-(2(2x+1))/(x^2+x-12) then lim_(x->3)[f(x)+g(x)+h(x)] is (a) -2 (b) -1 (c) -2/7 (d) 0

If f(x)=cot^(-1) ((3x-x^3)/(1-3x^2)) and g(x)=cos^(-1)((1-x^2)/(1+x^2)) then lim_(x->a) (f(x)-f(a))/(g(x)-g(a))

If f(x)=x-1, g(x)=3x , and h(x)=5/x , then f^(-1)(g(h(5))) =

If f (x) = cot ^(-1)((3x -x ^(3))/( 1- 3x ^(2)))and g (x) = cos ^(-1) ((1-x ^(2))/(1+x^(2))) then lim _(xtoa)(f(x) - f(a))/( g(x) -g (a)), 0 ltalt 1/2 is :

If f (x) = x^(4) + 2x^(3) , them lim_(x to 2) (f(x) - f(2))/(x - 2) is equal to

If f(x) = sqrtx , g(x) = root(3)(x+1) , and h(x) = root(4)(x+2), " then "f(g(h(2)))=

If f(x)=2x+3, g(x)=1-2x and h(x) =3x then find fo(goh)

if int_(0)^f(x) 4x^(3)dx=g(x)(x-2) if f(2)=6 and f'(2)=(1)/(48) then find lim_(x to 2) g(x)

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xto0^(-)) (sum(r=1)^(2n+1)[x^(r)]+(n+1))/(1+[x]+|x|+2x), where nin...

    Text Solution

    |

  2. lim(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)is equal to

    Text Solution

    |

  3. If f(x)=(2)/(x-3),g(x)=(x-3)/(x+4)," and "h(x)=-(2(2x+1))/(x^(2)+x-12)...

    Text Solution

    |

  4. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  5. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  6. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  7. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  8. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  9. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  10. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  11. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  12. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  13. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  14. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  15. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  16. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  17. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  18. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  19. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  20. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |