Home
Class 12
MATHS
The value of lim(xto2) (2^(x)+2^(3-x)-6)...

The value of `lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "`

A

`|2x|gtsqrt(3)`

B

`|2x|ltsqrt(3)`

C

`|2x|gesqrt(3)`

D

`|2x|lesqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 2} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x}} - 2^{1-x}} \), we will follow these steps: ### Step 1: Substitute \( x = 2 \) into the expression First, we substitute \( x = 2 \) into both the numerator and the denominator to check if we get an indeterminate form. **Numerator:** \[ 2^2 + 2^{3-2} - 6 = 4 + 2 - 6 = 0 \] **Denominator:** \[ \sqrt{2^{-2}} - 2^{1-2} = \sqrt{\frac{1}{4}} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} = 0 \] Since both the numerator and denominator evaluate to 0, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. ### Step 3: Differentiate the numerator and denominator **Numerator:** \[ f(x) = 2^x + 2^{3-x} - 6 \] Differentiating: \[ f'(x) = 2^x \ln(2) - 2^{3-x} \ln(2) = \ln(2) (2^x - 2^{3-x}) \] **Denominator:** \[ g(x) = \sqrt{2^{-x}} - 2^{1-x} \] Differentiating: \[ g'(x) = \frac{d}{dx}(2^{-x})^{1/2} - \frac{d}{dx}(2^{1-x}) = \frac{1}{2} (2^{-x})^{-1/2} (-\ln(2) 2^{-x}) - (-\ln(2) 2^{1-x}) \] This simplifies to: \[ g'(x) = -\frac{\ln(2)}{2} \cdot \frac{1}{\sqrt{2^{-x}}} \cdot 2^{-x} + \ln(2) \cdot 2^{1-x} \] \[ = -\frac{\ln(2)}{2} \cdot \frac{1}{\sqrt{2^{-x}}} \cdot 2^{-x} + \ln(2) \cdot 2^{1-x} \] ### Step 4: Substitute \( x = 2 \) again Now we substitute \( x = 2 \) into the derivatives. **Numerator:** \[ f'(2) = \ln(2)(2^2 - 2^{3-2}) = \ln(2)(4 - 2) = 2\ln(2) \] **Denominator:** \[ g'(2) = -\frac{\ln(2)}{2} \cdot \frac{1}{\sqrt{2^{-2}}} \cdot 2^{-2} + \ln(2) \cdot 2^{1-2} \] \[ = -\frac{\ln(2)}{2} \cdot \frac{1}{\frac{1}{2}} \cdot \frac{1}{4} + \ln(2) \cdot \frac{1}{2} \] \[ = -\frac{\ln(2)}{2} \cdot 2 \cdot \frac{1}{4} + \frac{\ln(2)}{2} = -\frac{\ln(2)}{4} + \frac{\ln(2)}{2} = \frac{\ln(2)}{4} \] ### Step 5: Calculate the limit Now we can calculate the limit: \[ \lim_{x \to 2} \frac{f'(x)}{g'(x)} = \frac{2\ln(2)}{\frac{\ln(2)}{4}} = 2\ln(2) \cdot \frac{4}{\ln(2)} = 8 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{8} \]

To solve the limit \( \lim_{x \to 2} \frac{2^x + 2^{3-x} - 6}{\sqrt{2^{-x}} - 2^{1-x}} \), we will follow these steps: ### Step 1: Substitute \( x = 2 \) into the expression First, we substitute \( x = 2 \) into both the numerator and the denominator to check if we get an indeterminate form. **Numerator:** \[ 2^2 + 2^{3-2} - 6 = 4 + 2 - 6 = 0 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of underset(xto2)lim(2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

The value of lim_(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))" is "

The value of lim_(xto pi//4)((cosx+sinx)^(3)-2sqrt(2))/(1-sin2x) is

Find the value of lim_(xto3^(-)) (x-2)/(x-3).

Evaluate: lim_(x to2)(sqrt(x^(3)-x-3)-sqrt(x+1))/(x-2)

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

    Text Solution

    |

  2. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  3. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  4. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  5. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  6. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  7. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  8. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  9. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  10. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  11. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  12. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  13. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  14. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  15. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  16. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  17. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  18. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  19. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  20. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |