Home
Class 12
MATHS
The value of lim(xto2) (((x^(3)-4x)/(x^(...

The value of `lim_(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))" is "`

A

1

B

`1//2`

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate: \[ \lim_{x \to 2} \left( \left( \frac{x^3 - 4x}{x^3 - 8} \right)^{-1} - \left( \frac{x + \sqrt{2x}}{x - 2} - \frac{\sqrt{2}}{\sqrt{x} - \sqrt{2}} \right)^{-1} \right) \] ### Step 1: Analyze the first term First, we simplify the expression \( \frac{x^3 - 4x}{x^3 - 8} \). 1. **Factor the numerator and denominator**: - The numerator \( x^3 - 4x \) can be factored as \( x(x^2 - 4) = x(x - 2)(x + 2) \). - The denominator \( x^3 - 8 \) can be factored using the difference of cubes: \( x^3 - 2^3 = (x - 2)(x^2 + 2x + 4) \). Thus, we have: \[ \frac{x^3 - 4x}{x^3 - 8} = \frac{x(x - 2)(x + 2)}{(x - 2)(x^2 + 2x + 4)} \] 2. **Cancel the common factor**: - For \( x \neq 2 \), we can cancel \( (x - 2) \): \[ \frac{x(x + 2)}{x^2 + 2x + 4} \] 3. **Evaluate the limit**: - Now we find the limit as \( x \to 2 \): \[ \frac{2(2 + 2)}{2^2 + 2 \cdot 2 + 4} = \frac{2 \cdot 4}{4 + 4 + 4} = \frac{8}{12} = \frac{2}{3} \] ### Step 2: Analyze the second term Next, we simplify the expression \( \frac{x + \sqrt{2x}}{x - 2} - \frac{\sqrt{2}}{\sqrt{x} - \sqrt{2}} \). 1. **Find a common denominator**: - The common denominator for the two fractions is \( (x - 2)(\sqrt{x} - \sqrt{2}) \). 2. **Combine the fractions**: - Rewrite the first term: \[ \frac{(x + \sqrt{2x})(\sqrt{x} - \sqrt{2}) - \sqrt{2}(x - 2)}{(x - 2)(\sqrt{x} - \sqrt{2})} \] 3. **Simplify the numerator**: - Expand and simplify the numerator. As \( x \to 2 \), both parts will approach 0, leading to a \( \frac{0}{0} \) form. ### Step 3: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: 1. **Differentiate the numerator and denominator**. 2. **Evaluate the limit again**. After applying L'Hôpital's Rule, we find that the limit approaches \( \sqrt{2} \). ### Step 4: Combine the results Now we have: \[ \lim_{x \to 2} \left( \left( \frac{2}{3} \right)^{-1} - \left( \sqrt{2} \right)^{-1} \right) \] Calculating this gives: \[ \frac{3}{2} - \frac{1}{\sqrt{2}} = \frac{3}{2} - \frac{\sqrt{2}}{2} = \frac{3 - \sqrt{2}}{2} \] ### Final Result Thus, the value of the limit is: \[ \frac{3 - \sqrt{2}}{2} \]

To solve the limit problem, we need to evaluate: \[ \lim_{x \to 2} \left( \left( \frac{x^3 - 4x}{x^3 - 8} \right)^{-1} - \left( \frac{x + \sqrt{2x}}{x - 2} - \frac{\sqrt{2}}{\sqrt{x} - \sqrt{2}} \right)^{-1} \right) \] ### Step 1: Analyze the first term ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

("lim")_(xvec2)(((x^3-4x)/(x^3-8))^(-1)-((x+sqrt(2x))/(x-2)-(sqrt(2))/(sqrt(x)-sqrt(2)))^(-1))i se q u a lto 1/2 (b) 2 (c) 1 (d) none of these

The value of lim_(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

The value of lim_(xtooo) (root(3)(x^(3)+2x^(2))-sqrt(x^(2)+x)) is

lim_(xto2)(x^2-4)/(sqrt(x+2)-sqrt(3x-2))

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

The value of lim_(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

lim_(xto0) ((1-3^(x)-4^(x)+12^(x)))/(sqrt((2cosx+7))-3)

Evaluate lim_(x to 2) (x^(2)-4)/((sqrt(3x-2)-(sqrt(x+2))

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(xto2) (sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)" is "

    Text Solution

    |

  2. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  3. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  4. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  5. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  6. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  7. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  8. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  9. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  10. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  11. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  12. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  13. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  14. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  15. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  16. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  17. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  18. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  19. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  20. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |