Home
Class 12
MATHS
If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e...

If `lim_(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim_(xto-2^(+)) sin((x^(4)-16)/(x^(5)+32)),` then a is

A

1

B

-1

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given limit problem, we need to find the value of \( a \) such that: \[ \lim_{x \to -2^-} \frac{a e^{\frac{1}{|x+2|}} - 1}{2 - e^{\frac{1}{|x+2|}}} = \lim_{x \to -2^+} \sin\left(\frac{x^4 - 16}{x^5 + 32}\right) \] ### Step 1: Evaluate the left-hand limit As \( x \to -2^- \), \( |x+2| = -(x+2) \) and approaches \( 0 \) from the negative side. Thus, we can rewrite the limit: \[ \lim_{x \to -2^-} \frac{a e^{\frac{1}{|x+2|}} - 1}{2 - e^{\frac{1}{|x+2|}}} \] As \( x \to -2^- \), \( e^{\frac{1}{|x+2|}} \to e^{+\infty} \) (since \( \frac{1}{|x+2|} \to +\infty \)). Therefore, we have: \[ \lim_{x \to -2^-} \frac{a \cdot \infty - 1}{2 - \infty} = \frac{\infty}{-\infty} \] This is an indeterminate form, so we can apply L'Hôpital's rule. ### Step 2: Apply L'Hôpital's Rule Differentiating the numerator and denominator with respect to \( x \): - The derivative of the numerator \( a e^{\frac{1}{|x+2|}} \) is \( a e^{\frac{1}{|x+2|}} \cdot \left(-\frac{1}{(x+2)^2}\right) \) (using the chain rule). - The derivative of the denominator \( 2 - e^{\frac{1}{|x+2|}} \) is \( -e^{\frac{1}{|x+2|}} \cdot \left(-\frac{1}{(x+2)^2}\right) \). Thus, we have: \[ \lim_{x \to -2^-} \frac{a e^{\frac{1}{|x+2|}} \cdot \left(-\frac{1}{(x+2)^2}\right)}{-e^{\frac{1}{|x+2|}} \cdot \left(-\frac{1}{(x+2)^2}\right)} = \lim_{x \to -2^-} \frac{a}{1} = a \] ### Step 3: Evaluate the right-hand limit Now, we evaluate the right-hand limit: \[ \lim_{x \to -2^+} \sin\left(\frac{x^4 - 16}{x^5 + 32}\right) \] As \( x \to -2^+ \): - \( x^4 - 16 = (x^2 - 4)(x^2 + 4) = (x-2)(x+2)(x^2 + 4) \) - \( x^5 + 32 = (x + 2)(x^4 - 2x^3 + 4x^2 - 8x + 16) \) Both the numerator and denominator approach \( 0 \), giving us the form \( \frac{0}{0} \). ### Step 4: Simplify the right-hand limit Using L'Hôpital's Rule again, we differentiate the numerator and denominator: 1. Differentiate the numerator \( x^4 - 16 \) to get \( 4x^3 \). 2. Differentiate the denominator \( x^5 + 32 \) to get \( 5x^4 \). Thus, we have: \[ \lim_{x \to -2^+} \frac{4x^3}{5x^4} \] Substituting \( x = -2 \): \[ = \frac{4(-2)^3}{5(-2)^4} = \frac{4(-8)}{5(16)} = \frac{-32}{80} = -\frac{2}{5} \] ### Step 5: Set the limits equal Now we set the two limits equal to each other: \[ a = -\frac{2}{5} \] ### Final Answer Thus, the value of \( a \) is: \[ \boxed{-\frac{2}{5}} \]

To solve the given limit problem, we need to find the value of \( a \) such that: \[ \lim_{x \to -2^-} \frac{a e^{\frac{1}{|x+2|}} - 1}{2 - e^{\frac{1}{|x+2|}}} = \lim_{x \to -2^+} \sin\left(\frac{x^4 - 16}{x^5 + 32}\right) \] ### Step 1: Evaluate the left-hand limit ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(x->2^-) (ae^(1/|x+2|)-1)/(2-e^(1/(|x+2|)))= lim_(x->2^+)sin ((x^4-16)/(x^5+32)) , then a is

lim_(xto0)((e^(x)-1)/x)^(1//x)

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

Evaluate lim_(xto2) (x^(10)-1024)/(x^(5)-32).

Evaluate lim_(xto2) (x^(2)-5x+6)/(x^(2)-4).

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

Slove lim_(xto0)((1+x)^(1//x)-e)/x

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. The value of lim(xto2) (2^(x)+2^(3-x)-6)/(sqrt(2^(-x))-2^(1-x))" is "

    Text Solution

    |

  2. The value of lim(xto2) (((x^(3)-4x)/(x^(3)-8))^(-1)-((x+sqrt(2x))/(x-2...

    Text Solution

    |

  3. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  4. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  5. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  6. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  7. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  8. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  9. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  10. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  11. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  12. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  13. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  14. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  15. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  16. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  17. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  18. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  19. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  20. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |