Home
Class 12
MATHS
The value of lim(xto(1)/(sqrt(2))) (x-co...

The value of `lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "`

A

`-(1)/(sqrt(2))`

B

-1

C

non-existent

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \frac{1}{\sqrt{2}}} \frac{x - \cos(\sin^{-1} x)}{1 - \tan(\sin^{-1} x)} \), we will follow these steps: ### Step 1: Substitute \( \theta = \sin^{-1}(x) \) Let \( \theta = \sin^{-1}(x) \). Then, we have: \[ x = \sin(\theta) \] As \( x \to \frac{1}{\sqrt{2}} \), \( \theta \to \frac{\pi}{4} \). ### Step 2: Rewrite the limit in terms of \( \theta \) Now, we can rewrite the limit: \[ \lim_{\theta \to \frac{\pi}{4}} \frac{\sin(\theta) - \cos(\theta)}{1 - \tan(\theta)} \] ### Step 3: Express \( \tan(\theta) \) Recall that: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \] Thus, we can rewrite the denominator: \[ 1 - \tan(\theta) = 1 - \frac{\sin(\theta)}{\cos(\theta)} = \frac{\cos(\theta) - \sin(\theta)}{\cos(\theta)} \] ### Step 4: Substitute back into the limit Substituting this back into our limit gives: \[ \lim_{\theta \to \frac{\pi}{4}} \frac{\sin(\theta) - \cos(\theta)}{\frac{\cos(\theta) - \sin(\theta)}{\cos(\theta)}} \] This simplifies to: \[ \lim_{\theta \to \frac{\pi}{4}} \frac{\sin(\theta) - \cos(\theta)}{1} \cdot \frac{\cos(\theta)}{\cos(\theta) - \sin(\theta)} \] ### Step 5: Simplify the expression This can be simplified further: \[ \lim_{\theta \to \frac{\pi}{4}} \cos(\theta) \cdot \frac{\sin(\theta) - \cos(\theta)}{\cos(\theta) - \sin(\theta)} = \lim_{\theta \to \frac{\pi}{4}} \cos(\theta) \cdot (-1) \] ### Step 6: Evaluate the limit Now, we evaluate the limit as \( \theta \to \frac{\pi}{4} \): \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus, the limit becomes: \[ -\frac{1}{\sqrt{2}} \] ### Final Answer The value of the limit is: \[ \boxed{-\frac{1}{\sqrt{2}}} \]

To solve the limit \( \lim_{x \to \frac{1}{\sqrt{2}}} \frac{x - \cos(\sin^{-1} x)}{1 - \tan(\sin^{-1} x)} \), we will follow these steps: ### Step 1: Substitute \( \theta = \sin^{-1}(x) \) Let \( \theta = \sin^{-1}(x) \). Then, we have: \[ x = \sin(\theta) \] As \( x \to \frac{1}{\sqrt{2}} \), \( \theta \to \frac{\pi}{4} \). ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

The value of ("lim")_(xto1/(sqrt(2))) ((x-"cos" (sin^(-1)x))/ (1-tan(sin^(-1)x))) is (a) -1/(sqrt(2)) (b) 1/(sqrt(2)) (c) sqrt(2) (d) -sqrt(2)

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

The value of lim_(xto (pi)/2) sqrt((tanx-sin{tan^(-1)(tanx)})/(tanx+cos^(2)(tanx))) is ………..

Evaluate lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x).

The value of lim_(xto pi) (1+cos^(3)x)/(sin^(2)x)" is "

lim_(xto1)(sqrt(1-cos2(x-1)))/(x-1) ,

The value of lim_(xto1) (2-x)^(tan((pix)/(2))) is

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

The value of lim_(x->pi/4) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. If lim(xto-2^(-)) (ae^(1//|x+2|)-1)/(2-e^(1//|x+2|))=lim(xto-2^(+)) si...

    Text Solution

    |

  2. lim(xto1) ((1-x)(1-x^(2))...(1-x^(2n)))/({(1-x)(1-x^(2))...(1-x^(n))}^...

    Text Solution

    |

  3. The value of lim(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x...

    Text Solution

    |

  4. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  5. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  6. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  7. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  8. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  9. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  10. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  11. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  12. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  13. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  14. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  15. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  16. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  17. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  18. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  19. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  20. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |