Home
Class 12
MATHS
lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n...

`lim_(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "`

A

1

B

0

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{n(2n+1)^2}{(n+2)(n^2 + 3n - 1)} \), we will follow these steps: ### Step 1: Rewrite the limit expression We start with the limit: \[ L = \lim_{n \to \infty} \frac{n(2n+1)^2}{(n+2)(n^2 + 3n - 1)} \] ### Step 2: Expand the numerator The numerator can be expanded: \[ (2n + 1)^2 = 4n^2 + 4n + 1 \] Thus, the numerator becomes: \[ n(2n + 1)^2 = n(4n^2 + 4n + 1) = 4n^3 + 4n^2 + n \] ### Step 3: Expand the denominator Now we expand the denominator: \[ (n + 2)(n^2 + 3n - 1) = n(n^2 + 3n - 1) + 2(n^2 + 3n - 1) = n^3 + 3n^2 - n + 2n^2 + 6n - 2 \] Combining like terms, we get: \[ n^3 + 5n^2 + 5n - 2 \] ### Step 4: Substitute back into the limit Now we substitute the expanded forms back into the limit: \[ L = \lim_{n \to \infty} \frac{4n^3 + 4n^2 + n}{n^3 + 5n^2 + 5n - 2} \] ### Step 5: Divide numerator and denominator by \( n^3 \) Next, we divide every term in the numerator and denominator by \( n^3 \): \[ L = \lim_{n \to \infty} \frac{4 + \frac{4}{n} + \frac{1}{n^2}}{1 + \frac{5}{n} + \frac{5}{n^2} - \frac{2}{n^3}} \] ### Step 6: Evaluate the limit as \( n \to \infty \) As \( n \) approaches infinity, the terms \( \frac{4}{n} \), \( \frac{1}{n^2} \), \( \frac{5}{n} \), \( \frac{5}{n^2} \), and \( \frac{2}{n^3} \) all approach 0: \[ L = \frac{4 + 0 + 0}{1 + 0 + 0 - 0} = \frac{4}{1} = 4 \] ### Conclusion Thus, the limit is: \[ \boxed{4} \]

To solve the limit \( \lim_{n \to \infty} \frac{n(2n+1)^2}{(n+2)(n^2 + 3n - 1)} \), we will follow these steps: ### Step 1: Rewrite the limit expression We start with the limit: \[ L = \lim_{n \to \infty} \frac{n(2n+1)^2}{(n+2)(n^2 + 3n - 1)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

lim_(n->oo)(n(2n+1)^2)/((n+2)(n^2+3n-1)) is equal to (a)0 (b) 2 (c) 4 (d) oo

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

lim_(ntooo) ((n!)^(1//n))/(n) equals

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

Evaluate lim_(ntooo)(pin)^(2//n)

lim_(n to oo ) {(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+....+ (n)/(n^(2)+n^(2))} is equal to

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. Among (i) lim(xtooo) sec^(-1)((x)/(sinx))" and "(ii) lim(xtooo) sec^(-...

    Text Solution

    |

  2. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  3. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  4. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  5. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  6. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  7. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  8. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  9. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  10. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  11. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  12. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  13. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  14. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  15. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  16. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  17. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  18. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  19. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  20. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |