Home
Class 12
MATHS
lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+...

`lim_(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45))` is equal to

A

`(1)/(2pi)`

B

`(-1)/(pi)`

C

`(-2)/(pi)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{(2x+1)^{40}(4x+1)^{5}}{(2x+3)^{45}} \), we will follow these steps: ### Step 1: Identify the form of the limit As \( x \) approaches infinity, both the numerator and denominator approach infinity. Thus, we have an indeterminate form of type \( \frac{\infty}{\infty} \). **Hint:** Always check the behavior of the function as \( x \) approaches the limit to determine if it results in an indeterminate form. ### Step 2: Factor out the highest power of \( x \) We can factor out \( x \) from each term in the numerator and denominator: \[ (2x + 1)^{40} = x^{40} \left(2 + \frac{1}{x}\right)^{40} \] \[ (4x + 1)^{5} = x^{5} \left(4 + \frac{1}{x}\right)^{5} \] \[ (2x + 3)^{45} = x^{45} \left(2 + \frac{3}{x}\right)^{45} \] ### Step 3: Rewrite the limit Substituting these factored forms into the limit gives: \[ \lim_{x \to \infty} \frac{x^{40} \left(2 + \frac{1}{x}\right)^{40} \cdot x^{5} \left(4 + \frac{1}{x}\right)^{5}}{x^{45} \left(2 + \frac{3}{x}\right)^{45}} \] ### Step 4: Simplify the expression The \( x^{40} \) and \( x^{5} \) in the numerator combine to \( x^{45} \), which cancels with \( x^{45} \) in the denominator: \[ \lim_{x \to \infty} \frac{\left(2 + \frac{1}{x}\right)^{40} \cdot \left(4 + \frac{1}{x}\right)^{5}}{\left(2 + \frac{3}{x}\right)^{45}} \] ### Step 5: Evaluate the limit As \( x \to \infty \), \( \frac{1}{x} \to 0 \). Therefore, we can substitute: \[ \left(2 + \frac{1}{x}\right) \to 2, \quad \left(4 + \frac{1}{x}\right) \to 4, \quad \text{and} \quad \left(2 + \frac{3}{x}\right) \to 2 \] This gives us: \[ \lim_{x \to \infty} \frac{(2)^{40} \cdot (4)^{5}}{(2)^{45}} \] ### Step 6: Simplify the final expression Calculating the powers: \[ = \frac{2^{40} \cdot 4^{5}}{2^{45}} = \frac{2^{40} \cdot (2^2)^{5}}{2^{45}} = \frac{2^{40} \cdot 2^{10}}{2^{45}} = \frac{2^{50}}{2^{45}} = 2^{5} = 32 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to \infty} \frac{(2x+1)^{40}(4x+1)^{5}}{(2x+3)^{45}} = 32 \]

To solve the limit \( \lim_{x \to \infty} \frac{(2x+1)^{40}(4x+1)^{5}}{(2x+3)^{45}} \), we will follow these steps: ### Step 1: Identify the form of the limit As \( x \) approaches infinity, both the numerator and denominator approach infinity. Thus, we have an indeterminate form of type \( \frac{\infty}{\infty} \). **Hint:** Always check the behavior of the function as \( x \) approaches the limit to determine if it results in an indeterminate form. ### Step 2: Factor out the highest power of \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo)((2x+1)^(40)(4x-1)^5)/((2x+3)^(45)) is equal to (a)16 (b) 24 (c) 32 (d) 8

lim_(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

lim_(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

Which of the following is/are true? (a) lim_(x->oo)((2+x)^(40)(4+x)^5)/((2-x)^(45))=1 (b) lim_(x->0)(1-cos^3x)/(xsinxcosx)=3/2 (c) lim_(x->0)(ln(1+2x)-2"ln"(1+x))/(x^2)=-1 (d) lim_(x->oo)(cot^(-1)(sqrt(x+1)-sqrt(x)))/(sec^1((2x+1)/(x-1)^2)=1

lim_(xrarroo) (2x)/(1+4x)

lim_(xtooo) (e^(1//x^(2))-1)/(2tan^(-1)(x^(2))-pi) is equal to

lim_(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

lim_(x to 0) ((2x-3)(3x-4))/((4x-5)(5x -6))

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

Evaluate lim_(xtooo)(1+2/x)^(x)

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xtooo) ((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2))" is equal to "

    Text Solution

    |

  2. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  3. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  4. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  5. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  6. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  7. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  8. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  9. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  10. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  11. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  12. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  13. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  14. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  15. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  16. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  17. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  18. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  19. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  20. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |