Home
Class 12
MATHS
lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt...

`lim_(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)]` is equal to

A

1

B

0

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{x \to \infty} \left( \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right) \] ### Step 2: Rationalize the expression To simplify the expression, we can rationalize it by multiplying and dividing by the conjugate: \[ L = \lim_{x \to \infty} \frac{\left( \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right) \left( \sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x} \right)}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{x + \sqrt{x + \sqrt{x}} - x}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \lim_{x \to \infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} \] ### Step 3: Simplify the numerator Next, we simplify the numerator: \[ \sqrt{x + \sqrt{x}} = \sqrt{x(1 + \frac{1}{\sqrt{x}})} = \sqrt{x} \sqrt{1 + \frac{1}{\sqrt{x}}} \] ### Step 4: Simplify the denominator Now, we simplify the denominator: \[ \sqrt{x + \sqrt{x + \sqrt{x}}} = \sqrt{x(1 + \frac{\sqrt{x + \sqrt{x}}}{x})} = \sqrt{x} \sqrt{1 + \frac{\sqrt{x + \sqrt{x}}}{x}} \] And \[ \sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x} = \sqrt{x} \left( \sqrt{1 + \frac{\sqrt{x + \sqrt{x}}}{x}} + 1 \right) \] ### Step 5: Substitute back into the limit We substitute these back into our limit: \[ L = \lim_{x \to \infty} \frac{\sqrt{x} \sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{x} \left( \sqrt{1 + \frac{\sqrt{x + \sqrt{x}}}{x}} + 1 \right)} \] This simplifies to: \[ L = \lim_{x \to \infty} \frac{\sqrt{1 + \frac{1}{\sqrt{x}}}}{\sqrt{1 + \frac{\sqrt{x + \sqrt{x}}}{x}} + 1} \] ### Step 6: Evaluate the limit As \( x \to \infty \): - \( \frac{1}{\sqrt{x}} \to 0 \) - \( \frac{\sqrt{x + \sqrt{x}}}{x} \to 0 \) Thus, we have: \[ L = \frac{\sqrt{1 + 0}}{\sqrt{1 + 0} + 1} = \frac{1}{1 + 1} = \frac{1}{2} \] ### Final Answer Therefore, the limit is: \[ \boxed{1} \]

To solve the limit \( \lim_{x \to \infty} \left( \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right) \), we will follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ L = \lim_{x \to \infty} \left( \sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x} \right) \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x->oo)[sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to (a)0 (b) 1/2 (c) log 2 (d) e^4

lim_(xrarroo) (sqrt(x+sqrt(x+sqrt(x)))) - sqrtx

lim_(x->oo)(sqrt(x+sqrt(x))-sqrt(x)) equals

Evaluate lim_(xtooo) sqrt(x)(sqrt(x+c)-sqrt(x)).

lim_(x rarr oo)(sqrt(x+1)-sqrt(x))

lim_(xto 1^-) (sqrtpi-sqrt(2sin^-1x))/(sqrt(1-x)) is equal to

lim_(x->1)sqrt(x+8)/sqrtx

lim_(x to 0) (sqrt(a+x)-sqrt(a-x))/( x)

lim_(x to oo) (sqrt(x + 1) - sqrt(x)) equals

Evaluate the following limits : Lim_(xtoa) (sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)), a != 0

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

    Text Solution

    |

  2. lim(xtooo) ((2x+1)^(40)(4x+1)^(5))/((2x+3)^(45)) is equal to

    Text Solution

    |

  3. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  4. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  5. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  6. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  7. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  8. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  9. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  10. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  11. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  12. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  13. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  14. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  15. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  16. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  17. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  18. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  19. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  20. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |