Home
Class 12
MATHS
lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x...

`lim_(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10))` is equal to

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \ldots + (x+100)^{10}}{x^{10} + 10^{10}}, \] we can follow these steps: ### Step 1: Analyze the limit As \( x \) approaches infinity, both the numerator and denominator approach infinity. Thus, we can simplify the expression by factoring out the highest power of \( x \) from both the numerator and the denominator. ### Step 2: Factor out \( x^{10} \) In the numerator, we can factor out \( x^{10} \) from each term: \[ (x+1)^{10} = x^{10} \left(1 + \frac{1}{x}\right)^{10}, \quad (x+2)^{10} = x^{10} \left(1 + \frac{2}{x}\right)^{10}, \ldots, \quad (x+100)^{10} = x^{10} \left(1 + \frac{100}{x}\right)^{10}. \] Thus, the numerator becomes: \[ x^{10} \left( \left(1 + \frac{1}{x}\right)^{10} + \left(1 + \frac{2}{x}\right)^{10} + \ldots + \left(1 + \frac{100}{x}\right)^{10} \right). \] In the denominator, we can also factor out \( x^{10} \): \[ x^{10} + 10^{10} = x^{10} \left(1 + \frac{10^{10}}{x^{10}}\right). \] ### Step 3: Rewrite the limit Now we can rewrite the limit: \[ \lim_{x \to \infty} \frac{x^{10} \left( \left(1 + \frac{1}{x}\right)^{10} + \left(1 + \frac{2}{x}\right)^{10} + \ldots + \left(1 + \frac{100}{x}\right)^{10} \right)}{x^{10} \left(1 + \frac{10^{10}}{x^{10}}\right)}. \] ### Step 4: Cancel \( x^{10} \) We can cancel \( x^{10} \) from the numerator and the denominator: \[ \lim_{x \to \infty} \frac{\left(1 + \frac{1}{x}\right)^{10} + \left(1 + \frac{2}{x}\right)^{10} + \ldots + \left(1 + \frac{100}{x}\right)^{10}}{1 + \frac{10^{10}}{x^{10}}}. \] ### Step 5: Evaluate the limit As \( x \to \infty \), \( \frac{k}{x} \to 0 \) for any constant \( k \). Therefore, each term \( \left(1 + \frac{k}{x}\right)^{10} \) approaches \( 1^{10} = 1 \). There are 100 terms in the numerator, each approaching 1: \[ \left(1 + \frac{1}{x}\right)^{10} + \left(1 + \frac{2}{x}\right)^{10} + \ldots + \left(1 + \frac{100}{x}\right)^{10} \to 1 + 1 + \ldots + 1 = 100. \] In the denominator, \( \frac{10^{10}}{x^{10}} \to 0 \), so: \[ 1 + \frac{10^{10}}{x^{10}} \to 1. \] ### Step 6: Final result Thus, we have: \[ \lim_{x \to \infty} \frac{100}{1} = 100. \] So, the final answer is: \[ \boxed{100}. \]

To solve the limit \[ \lim_{x \to \infty} \frac{(x+1)^{10} + (x+2)^{10} + \ldots + (x+100)^{10}}{x^{10} + 10^{10}}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo)((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) is equal to (a) 0 (b) 1 (c) 10 (d) 100

Statement-1 : lim_(xrarr oo) ((x+1)^10+(x+2)^10+.....+(x+100)^(10))/(x^10+9^10) =100 Statement -2 : If f(x)and g(x) are polynomials of same degree, then lim_(xrarroo) (f(x))/(g(x))=("Coefficient of leading term in" f(x))/("Coefficient of leading term in" g(x))

int_(0)^(10)|x(x-1)(x-2)|dx is equal to

lim_(xrarroo) (sum_(r=1)^(10)(x+r)^(2010))/((x^(1006)+1)(2x^(1004)+1))=

The value of lim_(xrarroo)[(1^((1)/(x))+2^((1)/(x))+3^((1)/(x))+…+10^((1)/(x)))/(10)]^(10x) is

lim_(xtooo) (x(logx)^(3))/(1+x+x^(2)) equals

lim_(xrarr-1) (x^(10)+x^(5)+1)/(x-1)

lim_(xrarr2) ((10-x)^(1//3)-2)/(x-2) is equal to

(lim)_(x->-1)(x^(10)+x^5+1)/(x-1)

4(10/x)^2-6(10/x)^2+3(10/x)^2=1

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xtooo) [sqrt(x+sqrt(x+sqrt(x)))-sqrt(x)] is equal to

    Text Solution

    |

  2. lim(xtooo) (2+2x+sin2x)/((2x+sin2x)e^(sinx)) is equal to

    Text Solution

    |

  3. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  4. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  5. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  6. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  7. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  8. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  9. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  10. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  11. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  12. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  13. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  14. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  15. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  16. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  17. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  18. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  19. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  20. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |