Home
Class 12
MATHS
If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^...

If `lim_(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3`, then the range of x is (where `n in N`)

A

1

B

`(2//3)^(1//2)`

C

`(3//2)^(1//2)`

D

`e^(1//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we start with the expression: \[ \lim_{n \to \infty} \frac{n \cdot 3^n}{n(x-2)^n + n \cdot 3^{n+1} - 3^n} = \frac{1}{3} \] ### Step 1: Analyze the Limit As \( n \) approaches infinity, both the numerator and denominator approach infinity. We can rewrite the limit by dividing both the numerator and denominator by \( 3^n \): \[ \lim_{n \to \infty} \frac{n \cdot 3^n}{n(x-2)^n + n \cdot 3^{n+1} - 3^n} = \lim_{n \to \infty} \frac{n}{n \cdot \frac{(x-2)^n}{3^n} + n \cdot 3 - \frac{3^n}{3^n}} \] ### Step 2: Simplify the Expression This simplifies to: \[ \lim_{n \to \infty} \frac{n}{n \left( \frac{(x-2)^n}{3^n} + 3 - \frac{1}{n} \right)} \] Cancelling \( n \) from the numerator and denominator gives: \[ \lim_{n \to \infty} \frac{1}{\frac{(x-2)^n}{3^n} + 3 - \frac{1}{n}} \] ### Step 3: Analyze the Behavior of the Terms As \( n \to \infty \), we need to analyze the term \( \frac{(x-2)^n}{3^n} \). - If \( |x-2| < 3 \), then \( \frac{(x-2)^n}{3^n} \to 0 \). - If \( |x-2| > 3 \), then \( \frac{(x-2)^n}{3^n} \to \infty \). - If \( |x-2| = 3 \), then \( \frac{(x-2)^n}{3^n} \) approaches a constant. ### Step 4: Set Up the Equation Since we want the limit to equal \( \frac{1}{3} \), we set up the equation: \[ \frac{1}{0 + 3 - 0} = \frac{1}{3} \] This implies that \( \frac{(x-2)^n}{3^n} \) must approach \( 0 \). Therefore, we require: \[ |x-2| < 3 \] ### Step 5: Solve the Inequality This inequality can be expressed as: \[ -3 < x - 2 < 3 \] Adding \( 2 \) to all parts gives: \[ -1 < x < 5 \] ### Conclusion Thus, the range of \( x \) is: \[ (2 - 3, 2 + 3) = (-1, 5) \] ### Final Answer The range of \( x \) is \( (-1, 5) \).

To solve the limit problem given, we start with the expression: \[ \lim_{n \to \infty} \frac{n \cdot 3^n}{n(x-2)^n + n \cdot 3^{n+1} - 3^n} = \frac{1}{3} \] ### Step 1: Analyze the Limit As \( n \) approaches infinity, both the numerator and denominator approach infinity. We can rewrite the limit by dividing both the numerator and denominator by \( 3^n \): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|24 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|20 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise EXERCISE 2.8|8 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 10|9 Videos
  • LINEAR COMBINATION OF VECTORS, DEPENDENT AND INDEPENDENT VECTORS

    CENGAGE ENGLISH|Exercise DPP 1.2|10 Videos

Similar Questions

Explore conceptually related problems

If("lim")_(xvecoo)(n .3^n)/(n(x-2)^n+n .3^(n+1)-3^n)=1/3, t h e n t h e range of x is (where n in N)dot (a) (2,5) (b) (1,5) (c) -5,5) (d) (-oo,oo)

If lim(n->oo)(n*3^n)/(n(x-2)^n +n*3^(n+1)-3^n) = 1/3 then the range of x is (where n epsilon N )

lim_(ntooo) ((n!)^(1//n))/(n) equals

If lim_(nrarroo) (n.2^(n))/(n(3x-4)^(n)+n.2^(n+1)+2^(n))=1/2 where "n" epsilonN then the number of integers in the range of x is (a) 0 (b) 2 (c) 3 (d) 1

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

lim_(nrarroo) (3.2^(n+1)-4.5^(n+1))/(5.2^(n)+7.5^(n))=

lim_(ntooo) (-3n+(-1)^(n))/(4n-(-1)^(n)) is equal to (n inN)

lim_(n to oo) {(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(3n)}=

lim_(ntooo) (n(2n+1)^(2))/((n+2)(n^(2)+3n-1))" is equal to "

CENGAGE ENGLISH-LIMITS-Exercises (Single Correct Answer Type)
  1. lim(xtooo) ((x+1)^(10)+(x+2)^(10)+...+(x+100)^(10))/(x^(10)+10^(10)) i...

    Text Solution

    |

  2. lim(xtooo) (2sqrt(x)+3root(3)(x)+4root(4)(x)+...+nroot(n)(x))/(sqrt((2...

    Text Solution

    |

  3. If lim(ntooo) (n.3^(n))/(n(x-2)^(n)+n.3^(n+1)-3^(n))=1/3, then the ran...

    Text Solution

    |

  4. ("lim")(xvecoo)n^2(x^(1/n)-x^(1/((n+1)))),x >0,i se q u a lto 0 (b) e...

    Text Solution

    |

  5. Let f(x)=lim(ntooo) (1)/(((3)/(pi)tan^(-1)2x)^(2n)+5). Then the set of...

    Text Solution

    |

  6. f(x)=("ln"(x^(2)+e^(x)))/("ln"(x^(4)+e^(2x))). Then lim(x to oo) f(x) ...

    Text Solution

    |

  7. The value of lim(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(...

    Text Solution

    |

  8. If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f((pi)/...

    Text Solution

    |

  9. lim(xto1) (xsin(x-[x]))/(x-1), where [.] denotes the greatest integer ...

    Text Solution

    |

  10. lim(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

    Text Solution

    |

  11. lim(xto0) (x^(a)sin^(b)x)/(sin(x^(c))), where a,b,c inR~{0}, exists an...

    Text Solution

    |

  12. lim(x->0)(x^4(cot^4x-cot^2x+1)/(tan^4x-tan^2x+1)) is equal to (a) 1 (...

    Text Solution

    |

  13. lim(xto1) (1-x^(2))/(sin2pix) is equal to

    Text Solution

    |

  14. lim(xto0) (1)/(x)cos^(1)((1-x^(2))/(1+x^2)) is equal to

    Text Solution

    |

  15. lim(yto0) ((x+y)sec(x+y)-xsecx)/(y) is equal to

    Text Solution

    |

  16. lim(xto1) (1+sinpi((3x)/(1+x^(2))))/(1+cospix) is equal to

    Text Solution

    |

  17. ("lim")(xvecoo)sum(x=1)^(20)cos^(2n)(x-10)i se q u a lto 0 (b) 1 (...

    Text Solution

    |

  18. ("lim")(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se...

    Text Solution

    |

  19. lim(xtooo) {(x+5)tan^(-1)(x+5)-(x+1)tan^(-1)(x+1)} is equal to

    Text Solution

    |

  20. The value of lim(xto0) ([(100x)/(sinx)]+[(99sinx)/(x)]) (where [.] rep...

    Text Solution

    |